
slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

PERL/XML based Neural Networks:
miRNA and DNA Scanner

by Bryce L. Meyer
b.l.meyer @ att.net

Presented to the St. Louis Unix Users Group

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Outline
 Why am I doing this? (Problem)[Biology Stuff]

 What is a Neural Network? (Basics) [Math Stuff]

 What parts do we need for the scanner? [PERL]

Input Encoding (IE)

Forward Pass (FP)

Truth Data (+Making a false set)

Backward Pass (BP)

Rinse and Repeat: When is it done? (Training)

Storing Data

 Usage

 Future Work

 References and Recommended Reading

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Problem: What are MicroRNAs?

 MicroRNAs (miRNAs, in GenBank labeled as
MIR-###) are short (~20 base pair) sections of
messenger RNA (mRNA).

 Can easily find a list here: http://microrna.sanger.ac.uk/cgi-

bin/sequences/browse.pl (and can walk through to
Ensembl to see chromosome context, like here
: http://www.ensembl.org/Homo_sapiens/contigview?region=21&vc_start=41450061&vc_end=41462060)

http://microrna.sanger.ac.uk/cgi-bin/sequences/browse.pl
http://microrna.sanger.ac.uk/cgi-bin/sequences/browse.pl
http://microrna.sanger.ac.uk/cgi-bin/sequences/browse.pl
http://www.ensembl.org/Homo_sapiens/contigview?region=21&vc_start=41450061&vc_end=41462060
http://www.ensembl.org/Homo_sapiens/contigview?region=21&vc_start=41450061&vc_end=41462060
http://www.ensembl.org/Homo_sapiens/contigview?region=21&vc_start=41450061&vc_end=41462060
http://www.ensembl.org/Homo_sapiens/contigview?region=21&vc_start=41450061&vc_end=41462060
http://www.ensembl.org/Homo_sapiens/contigview?region=21&vc_start=41450061&vc_end=41462060
http://www.ensembl.org/Homo_sapiens/contigview?region=21&vc_start=41450061&vc_end=41462060

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Problem: Human miRNA Facts
(Important for hunting them!, as of 2006, see link for current)

Known Human miRNA Sizes in bases
for

332 Known Precursors:
Hairpin Near-Mature
Avg.: 87.4 21.8
Max.: 137 25
Data compiled from raw data at [Sanger
2006] miRNAbase @
http://microrna.sanger.ac.uk/

Known Human miRNA Sizes in bases for
332 Known Precursors:

Where is Near-Mature precursor found?
Forward Stem (+): 189
Reverse Stem (-): 143

Data compiled from raw data at [Sanger 2006]
miRNAbase @ http://microrna.sanger.ac.uk/

http://microrna.sanger.ac.uk/

http://microrna.sanger.ac.uk/
http://microrna.sanger.ac.uk/

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Problem: Since miRNAs are Too Short We
Want Hairpins!

 NEED: Make a learning program (a Neural
Network) that will scan DNA for Hairpins

 Mature miRNAs are too short for a pattern (I found
out the hard way :0)

 Hairpins can be found in DNA, these hairpins are
used to make miRNAs

 Hairpins MAY have a pattern, and are bigger (80+
bases)

 NOTE: Same technique can be used for ANY pattern (i.e. Non-
miRNA stuff) in DNA

Feel like using it to find new proteins, oncogenes, etc.?

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Problem Solution Plan

1. Obtain miRNA Data for Hairpins (from Sanger MIRBASE)

2. Develop an encoding method; determine sizing from miRNA
data

3. Develop a data schema (XML in my case)

4. Make the Neural Network, train it, and alter until it stabilizes at
99.999% (or find out how firm is the pattern for miRNAs)

5. If I fail at #4, find a new DNA disease pattern and redo NN
using core code and combine with other methods.

6. Use the stabilized NN and a custom DNA scanner to look over
areas near disease causing genes

7. Send answers to key researchers in field and publish. Provide
the code core as a tool set to any researcher.

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Basics: What is a Neural Network?

 Neural Network (NN) = Mathematical/
Programmable way to determine and use
patterns in a learning system

 Copied from Nature!

 Your eye/brain are examples
 [Hayken,1994] is a great NN reference!

Is used as initial basis for the math algorithms to follow

I deviate from his terminology.

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

What are Neural Networks?
 Neural Networks (NNs) operate by simulating how

neurons function
Stimuli (Inputs) enter the neuron
Neuron accumulates (Sums) inputs until it reaches a point
to force an action potential (act positively or negatively: +1
or -1 according to response function), which may be
transmitted to other neurons.
Feedback alters sensitivity (weighting) of each input.
(learning via training)
An array of connected neurons forms a network.
The knowledge gained by the network is represented by all
the weights of the network.

 NN are best at finding patterns (if they exist!).

SUM of (inputs*
weights)

ResponseInputs
Weights Response function ()

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Neural Network Theory Basics:
The “Forward Pass”

-1

+1

+1

-1

Input Array

N1

Out

Input Nodes Output Node

Yes (+1) or
No (-1)

Decision

1

2

3

4

N2

Input Weight Matrix ([Wi]): Output Weight Matrix ([Wo]):
[0.5 0.5]

Action Response Function ()
used SIGN function:
If a<0 = -1, else +1

[W]: Weights going into the node
Used 2 weight matrices:

[Wi] and [Wo]

+1

-1

[I]

BASIC EQUATION:

[Wi]*[I]+) = [N]
or N(i)=SIGN[SUM(I(j)*Wi(i,j) +)]

Let

2= 1=0

0.125 0.125 0.125 0.125

0.125 0.125 0.125 0.125

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Neural Net Theory Basics
(continued)

-1

+1

-1

-1

Input Array

N1

2

Out

Input Nodes

Yes (+1) or
No (-1)

Input Weight Matrix ([Wi]):

Wi(1,1)=.125

Wi(2,1)=.125

1

2

3

4

N2

-1

N(1)= SIGN[Wi(1,1)*I(1)+Wi(2,1)*I(2)+ Wi(3,1)*I(3)+Wi(4,1)*I(4)]
= SIGN[(0.125)*(-1)+(0.125)*(+1)+(0.125)*(-1)+(0.125)*(-1)]
= SIGN[-0.375] {note this is Y(1) -- used later}
= -1

0.125 0.125 0.125 0.125

0.125 0.125 0.125 0.125

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Neural Net Theory Basics
(continued #2)

-1

+1

-1

-1

Input Array

N1

2

Out

Input Nodes

Yes (+1) or
No (-1)

Input Weight Matrix ([Wi]):

Wi(3,2)=.125

1

2

3

4

Wi(4,2)=.125
N2 -1

-1

N(2)= SIGN[Wi(1,2)*I(1)+Wi(2,2)*I(2)+ Wi(3,2)*I(3)+Wi(4,2)*I(4)]
= SIGN[(0.125)*(-1)+(0.125)*(+1)+(0.125)*(-1)+(0.125)*(-1)]
= SIGN[-0.375] {note this is Y(2) -- used later}
= -1

0.125 0.125 0.125 0.125

0.125 0.125 0.125 0.125

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Neural Net Theory Basics
(continued #3)

-1

+1

-1

-1

Input Array

N1

2

Out

Input Nodes

Yes (+1) or
No (-1)

Output Weight Matrix ([Wo]):
[0.5 0.5]

Wo(2)=0.5

1

2

3

4

N2 -1

-1

-1

Output Node

Out = SIGN[Wo(1)*N(1)+Wo(2)*N(2)]
= SIGN[0.5*(-1)+0.5*(-1)]
= SIGN[-1.0] {note this is O(1) -- used later}
= -1

Wo(1)=0.5

[N]=[-1 -1]
I have an output node because I just

want a +1 or -1.
You could stop before this and feed into a

'case' statement for more than one
category.

If you do not use the activation function
and leave the output as a decimal after

the array is fully trained you have a
'certainty' measure, i.e. I am XX% certain

it is this.

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Neural Net Theory Basics
(continued #4)

-1

+1

-1

-1

N1

2

Out
Yes (+1) or

No (-1)

1

2

3

4

N2

-1

Input Array Input Nodes Output Node Decision

Decision is
NO

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Neural Net :
Feedback=Training= “Backward pass”*

-1

+1

+1

-1

N1

Out

Pre-Action Response
(before doing the SIGN
for N)
=[Y]
=[-0.375 -0.375]

Yes (+1) or
No (-1)

1

2

3

4

N2

Before feedback:
Input Weight Matrix ([Wi]):

Output Weight Matrix ([Wo]):
[0.5 0.5] before feedback

CORRECT RESPONSE ?
•If right, do nothing.
•If wrong, feedback (=
negative feedback model).

*= there are MANY training methods, and equations, I just picked one. See [Hayken,1994] Here I chose to use the pre-activated
Neuron output to use in training, you may decide to use the post activated neuron output ([N] in lieu of [Y], Result in lieu of [O]).

[dWi]= *(C-[Y])*[I]T+

dWo *(C-[O])*[Y]T+

Output Node:
Pre-action
response
= [O]
=[-1]

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

NN Basics: The Backward Pass Example
(an independent training method)

-1

+1

+1

-1

N1

Out Yes (+1) or
No (-1)

1

2

3

4

N2

Input Weight Matrix ([Wi]):

Output Weight Matrix ([Wo])
dWo()=1*(C-O()) * Y() + 0.01

dWo(1)=1*(1-(-1))*(-0.375)+0.01= -0.76
dWo(2)=1*(1-(-1))*(-0.375)+0.01= -0.76

Wo'()=Wo(i)+dWo()
Wo'(1)=0.5+(-0.76) = -0.26
Wo'(2)=0.5+ (-0.76) = -0.26

new [Wo] (normalized)=[0.5 0.5]

CORRECT RESPONSE ?
•If right, do nothing.
•If wrong, feedback (=
negative feedback model).
•ASSUME NOT
CORRECT HERE
(Correct=+1=C)

dWo *(C-[O])*[Y]T+

[dWi]= *(C-[Y])*[I]T+
Let
Let

dWi() = 1*(C- Y())*I() + 0.01
dWi(1,1)=1*(1-(-0.375)*(-1)+0.01=-1.365

Wi'()=Wi()+dWi()
Wi'(1,1)=0.125+(-1.365)= -1.24
new [Wi] (normalized):

NOTE:
I decided to not allow
negative weights in this
example (you may decide
otherwise)
So when I normalize:
Sum(all elements in
weights matrix)=1

NOTE: [Wi] changed to
favor the positive inputs

and not favor the
negative ones!

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Process

Decide Data formats

Get Truth
Input Data

Make
Fake Data

Decide
NN

Structure and
Assumptions

Make an
Input

Encoder

Code NN
Core

Forward
Pass

Code NN
Core

Backward
Pass

Create
Trainer

Train NN
(SAVE

WEIGHTS!)
Use NN!

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Phases in Making a Neural Network
Work

 Input Preparation (Input Encoding): Need to know how I will make my
input data into +1/-1's. Know as much about your goal and input as
possible.

 Data Sets:

Need a set of true data + Need a set of false data

 Sizing and Layers: How many neuron layers of what size?

 Training: Using the known true and false data, train the NN until it is
right regularly a set % of time (~95%, 99%, 99.999%) (LONGEST
PART RUNWISE!!!!!)

 The weaker the pattern in the truth data, the more training and
more/bigger layers are required

 If the array is less than 100%, then it will have an error rate.

 What assumptions? What training model?

 Usage: Using the trained weights matrices, scan unknown data
(forward passes) and find out what it is!

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

My Pseudo Two layer Example

Result
[W

i]

[W
j]

[W
x
]

T
G

C
G

B
A

T
G

A
T

G
A

T
T
A

G
A

T
A

G
A

G
A

T
T
A

T
T
A

T
A

DNA
INPUT
ENCODER
(prepdnaseq{}
)

[Ni]

[Nj]

[I]

[Nout]

DNA
(or
RNA)
input
String

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Input Encoding: Other Problems

 Images

{-1,-1,-1,-1,-1,-1,-1,-1}
{-1,-1,-1,-1,-1,-1,-1,-1}
{-1,-1,-1,-1,-1,-1,-1,-1}
{-1,-1,-1,+1,+1,-1,-1,-1}
{-1,-1,-1,+1,-1,+1,-1,-1}
{-1,-1,-1,+1,-1,-1,+1,-1}
{-1,-1,-1,+1,-1,-1,-1,+1}
{-1,-1,+1,-1,-1,-1,-1,-1}

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
+1
+1
-1
-1
-1
-1
-1
-1
+1
-1
+1
-1
-1
-1
-1
-1
+1
-1
-1
+1
-1
-1
-1
-1
+1
-1
-1
-1
+1
-1
-1
+1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

What parts do we need for the DNA
scanner?

 Since NN sees only +1/-1, but DNA is {A,T,G,C} I need
an 'Input Encoder' (IE) to make data into +1/-1

 Need a nested loops to perform the 'Forward Pass'
(FP)

 Need a truth table comparison to determine
correctness

 Need a 'Backward Pass' (BP) to feed the results back

 Need to store statistics and weights

 Need support routines/programs (store data, retrieve
data, store runs/back-up data, make training data)

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

IE: Encoding DNA
 DNA has only 4 nucleotides: A,T,G,C

A binds to T; G to C

 RNA has the same letters with U in lieu of T

 Use 0 for -1, 1 for +1, then use PERL regexs
and arrays:

###
SUB BINCONVERT Binary converter from base
##
sub binconvert{
$bseq=~s/a/00/g;
$bseq=~s/t/11/g;
$bseq=~s/u/11/g;
$bseq=~s/c/10/g;
$bseq=~s/g/01/g;
@temparray=();
@temparray=split("",$bseq);
@finarray=();
foreach $titem(@temparray){

$titem=~s/0/-1/s;
push @finarray,$titem;

}

}

Translation Table:
Translate base into 2
bit neural net
representation

A is 00
T is 11 (as is U)

C is 10
G is 01

then swap '0''s for -1

NOTE: I will try to use simple code here, but there are many better ways to code
this and the following PERL snippets :0)

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

IE: Reading in the Input Strings into the Input Array

Input Array size = fixed
Make array same size as input array Center and
Stuff with 0‟s if too small)

Can be whole
DNA/RNA
segment or
piece scanned
into the NN

0

0

0

0

0

0

0

0

Pack in '0''s since
our truth data
VARIES in SIZE!!!
0's essentially
numb inputs to
the NN (like beer)

t

c
g

a

t
c

Translation Table:
Translate base into 2
bit neural net
representation

A is 00
T is 11 (as is U)

C is 10
G is 01

then swap '0''s for -1

1
1

1
0

0
1

0
0

1
1

1
0

+1

+1

+1
-1

-1
1

-1
-1

1
1

1
-1

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

My DNA Scanner Example
 Uses an input array [I] fed by the DNA Inputter

 Has two primary Neuron Matrices (Arrays) [Ni]
and [Nj]

[Wi] is the weights that multiply [I] going into [Ni]

[Wj] is the weights that multiply the output of [Ni]
into [Nj]

 One output neuron [Nout] to get to a +1/-1
output.

[Wx] is the weights that feed [Nj] into [Nout]

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

IE: Prep DNA for Input subroutine
sub prepdnaseq{
#prep input array and training array for neural net useage @arraybinseq is data
ready for input aray
$lherein=length($sequ);
#print "size of input vector is $lherein\n";
$bseq=$sequ;
&binconvert;
$binseq=$bseq;
@finarray is from the binconvert subroutine
@arraybinseq=@finarray;
$leninputarray=$#arraybinseq+1;
#print "$bseq\n";
#print "@arraybinseq\n";
#pack in 0's for remaining length between input array size and data use 0's if
Zero fill option selected
$ststhere=$leninputarray;@nfinhere=();
if ($centerfill eq "yes" and $inputarryaysize>($ststhere+2)){
$halfdiffarsizehere=($inputarryaysize-$ststhere)/2;
$partherone=int($halfdiffarsizehere);
$parttwo=$inputarryaysize-$ststhere-$partherone;
if ($zerofill eq "yes"){

@beginpadarr=split("","0" x $partherone);
@endpadch=split("","0" x $parttwo);
@nfinhere=@beginpadarr;push @nfinhere,@arraybinseq;push @nfinhere,@endpadch;
@arraybinseq=@nfinhere;

}
.....
$lenfinal=$#arraybinseq+1;
#print "size of outputvector\:$lenfinal\n";
###END SUB prepdnaseq
}

I have to center
to input data in

my array since it
is smaller than

the array
Need to make
sure that it is
smaller too.

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

FP: Doing Matrix Math
 For a two layer NN (the example here) you have three weights

matrices and three neuron arrays, we will look at one first:

 [I]=the input

 [Ni] the array of values for the Input Neuron Array (lets say 100
elements, or 100x1), [rawNi] is the value before we do the SIGN
functions.

 [Wi] the weights that multiply against the input data and are
summed in the Input Neuron Array (has to be 300 x 100 or the
matrix math won't work)

 We need the values of [Ni]:

Mathwise: See NN basics slides

PERL-Wise: We use nested 'for' loops and arrays.

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

FP: Matrix Multiply to get the Raw Response

@nnlayer=0; # zeroize my layer
$sizeinputvector=$#arraybinseq;
Tell me how much data to expect
if ($sizeinputvector>$inputarryaysize){

#chomp at $inputarryaysize
}

THIS IS THE MATRIX MAGIC:
for($j=0;$j<$sizeonelayernn;$j++){
for($i=0;$i<$inputarryaysize;$i++){

@nnlayer[$j]=@nnlayer[$j]+$wi[$j][$i]*@arraybinseq[$i]*$fpf;
}

}
@yipre=@nnlayer;

 @nnlayer[]=[Ni]

 @arraybinseq[]=[I]

 $wi[][]=[Wi]

 Note I can recycle this segment just by changing the input array the weights
matrix and where I put the raw output (@yipre)) (or by adding a dimension to
my arrays and iterating)

$fpf is called a multiplicative amplifier, which can
be used to strengthen the inputs to the neuron
(there are such things in real neurons: vitamin B

anyone?)

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

FP: Raw Response to Actual using
SIGN

@yipre is raw output (i.e. Not just +1 or -1, or zeros for the numbed neurons)

I need to apply my activation function to the raw output for each neuron to get
its result:

 This one is a modified SIGN to account for the 0 fills:

apply activation function one
for($j=0;$j<$sizeonelayernn;$j++){

$temphere=@nnlayer[$j]+$thetaone;
if($temphere==0){

Zero fill handler and sign
$reshere=0-1;

}
else{$reshere=int($temphere/abs($temphere));}
@nnlayer[$j]=$reshere;

if @nnlayer[$j] is +1 is am activated
}

$thetaone is called an
additive amplifier, which can

be used to strengthen or
weaken the inputs to the
neuron (like Caffeine or

Alcohol :0)

NOTE: I need to store the RAW output to use in the Backward Pass

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

FP: Now for the Rest of the Layers
 Example uses one layer past input layer, then a single

neuron for the output layer (a pseudo 2 layer NN)

 The Matrix Multiply Step and SIGN step are repeated
for each layer.

 The last layer in my example only has one neuron,
making this NN a 'Boolean Classification Network'
(since I classify my output to just true or false)

 If I were doing something more complex, I could have
many end nodes to get an array to match against a
series of results (' Non-Boolean Classifier' ex: facial
recognition)

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

FP: Rest of the Layers in PERL

MUltiply in Wj such that [wi]*[Wj]T

@nnlayerj=0;
for($k=0;$k<$sizetwolayernn;$k++){

add in node results from prior layer times weights matrix
for($j=0;$j<$sizeonelayernn;$j++){

@nnlayerj[$k]=@nnlayerj[$k]+$wj[$k][$j]*@nnlayer[$j]*$fpf2;
}

}
@jipre=@nnlayerj;
apply activation function nnlayer2
for($k=0;$k<$sizetwolayernn;$k++){

$temphere=@nnlayerj[$k]+$thetatwo;
if($temphere==0){

$reshere=0-1;
}
else{$reshere=int($temphere/abs($temphere));}
@nnlayerj[$k]=$reshere;

}

#multiply by in wx
$preimpulse=0;
for($k=0;$k<$sizetwolayernn;$k++){

$preimpulse=$preimpulse+@nnlayerj[$k]*@wx[$k]*$fpf3;
}
$preimpulse=$preimpulse+$thetathree;
#apply activation function two
#print "forward pass pre-impluse pre theta sum\:$preimpulse\n";
if ($preimpulse==0){
if I am numb to the end the answer is FALSE

$actionimpulse=-1;
}
else{

$actionimpulse=int($preimpulse/abs($preimpulse));
}
print "action impulse result is $actionimpulse\n";
END FORWARD PASS

Last Layer (goes into 1
neuron for Output)

$actionimpulse is the
true (+1) or false (-1)
result (Output Layer)

($thetathree is input
coefficient (additive
amplifier) for Wx)

Middle Layer
($thetatwo is additive

input coefficient (additive
amplifier) for Wj)

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

FP (Training): Was I right?

 For a training run, I need to see if my answer
($actionimpulse) was correct

 If it was not correct, I need to do a Backwards Pass

 If correct, save the whole thing (all the weights) first

THIS IS WHAT I FED THE FORWARD PASS:
$binsequencehere is the binary form (+1/-1/0) of the input DNA test string
($resultexpected,$binsequencehere)=split(/\:/,$sequencelinehere);
....
@arraybinseq=split(/\,/,$binsequencehere);
$resultexpected is what this sequence should be: Either True (+1) or False (0)
$intgerresp{} makes the 0 a -1
.....

$correctactionresp=$intgerresp{$resultexpected};

CHECKING MY RESPONSE!

if ($correctactionresp==$actionimpulse){
Just save weights
$actioncorrectness="Correct";
$corrbyrun[$kk]++;

}
else{
$actioncorrectness="Incorrect\-$correctactionresp $resultexpected";
&backwardpass;
again save weights after training

}

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

The Backwards Pass (BP)
 If the response is wrong (using negative reinforcement),

need to do a Backwards Pass

 The Backwards Pass uses the raw neuron outputs of the
Forward Pass, in a training function with training
coefficients (TCs),to change my weights matrices

i.e.: Change to Weight item = Multiplying TC * Raw
Output *Input*(expected-actual)+ Additive TC.

 This is why you have to save the raw neuron outputs
before the action response function (i.e. Before applying
SIGN)

 After altering each weight by the training function, I will
need to normalize the matrices, so that each item in matrix
is a %age (i.e. Magnitudes add up to 1)

Otherwise the forward pass will be way off next run
(remember I deal with -1/+1/0, nothing bigger).

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

BP: A Bit on Training: Truth Data
 In order to train my NN I need data I know is true, and data I

know is false.

True data is stored with an array value of +1

My truth data was downloaded from Sanger miRBASE (see
[Sanger 2006])

 There needs to be MANY more fake/false answers then true
ones

I generated them by random numbers:

Fake strings of DNA can be any length in a range (used the
same rough range as true data + 20% on each side)

Length = random between (below real min size and above
real max size of trues)

Each item in string is either 0=A 1=T 2=G 3=C, then use
RND(3) or similar for each base

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Alter the Output Weights [Wx]

###NOTE SET Beta and lambdas in configuration file
WORK BACKWARDS--from wx[k] to Wj[k][j] to Wi[j][i]
for($k=0;$k<$sizetwolayernn;$k++){

$tempdeltawo=$betathree*($correctactionresp-$preimpulse) *@jipre[$k]+$lambdathree;

alter wx (output layer)
@wx[$k]=@wx[$k]+$tempdeltawo;

}

normalize wx[k]
$sumwx=0;
for($k=0;$k<$sizetwolayernn;$k++){

$sumwx=$sumwx+abs(@wx[$k]);
}
for($k=0;$k<$sizetwolayernn;$k++){
@wx[$k]=abs(@wx[$k]/$sumwx);

}

Training Function:
$betathree=Multiplying training
coefficient
$lambdathree=Additive training
coefficient
(how hard are we smacking the
knuckles to alter behavior)
$tempdeltawo=the change to the
element of [Wx]
@nnlayerj=inputs to this matrix (prior
Layer)
@jipre[]=preimpulse values of layer J

$preimpule=my raw
responses

Normalize and use only positive weights. Any weights
matrix adds up to 1

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Alter the Rest of the Layers [Wj]
 Same method, just repeated for each layer

(middle layer here).

#####ALTER Wj[k][j]
for($k=0;$k<$sizetwolayernn;$k++){
for($j=0;$j<$sizeonelayernn;$j++){
$tempdeltaone=$betatwo*($correctactionresp-@jipre[$k])*@yipre[$j]+$lambdatwo;
$wj[$k][$j]=$wj[$k][$j]+$tempdeltaone;

}
}

normalize Wj
$sumwzero=0;
for($k=0;$k<$sizetwolayernn;$k++){

for($j=0;$j<$sizeonelayernn;$j++){
$sumwzero=$sumwzero+abs($wj[$k][$j]);

}
}
for($k=0;$k<$sizetwolayernn;$k++){

for($j=0;$j<$sizeonelayernn;$j++){
$wj[$k][$j]=abs($wj[$k][$j]/$sumwzero);
}

}

FYI..in the very next version I just use a 3 layer matrix and iterate
this instead of copying it.

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Alter the Rest of the Layers [Wi]
 Same method, just repeated for each layer.

(Input Layer here)

####alter wi
for($j=0;$j<$sizeonelayernn;$j++){

for($i=0;$i<$inputarryaysize;$i++){
$tempdeltaone=$betaone*($correctactionresp-@yipre[$j])*@arraybinseq[$i]+$lambdaone;
$wi[$j][$i]=$wi[$j][$i]+$tempdeltaone;

}
}

normalize Wi
$sumwzero=0;
for($j=0;$j<$sizeonelayernn;$j++){

for($i=0;$i<$inputarryaysize;$i++){
$sumwzero=$sumwzero+abs($wi[$j][$i]);

}
}
for($j=0;$j<$sizeonelayernn;$j++){

for($i=0;$i<$inputarryaysize;$i++){
$wi[$j][$i]=abs($wi[$j][$i]/$sumwzero);
}

}

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Rinse and Repeat

 Next, repeat forward pass-backward pass for
every true and false test in your training data.

 Recommend a random shuffle of complete set
each training iteration (one run through all trues
and falses)

This avoids the danger of ordering (i.e. Go all the
way +1, then all the way -1...leads to instability or
you can manually mix them too).

 Tabulate statistics for success in each training
iteration, I.e. Percentage of correct forward
passes vs. incorrect forward passes.

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Rinse and Repeat: How Do I Know
What I Am Doing Is Right?

 After a large number of training iterations, the
success level % should level off.

by iteration hit rate
correct=3378 (64.6754%) misses=1845 total=5223
correct=3382 (64.752%) misses=1841 total=5223
correct=3387 (64.8477%) misses=1836 total=5223
...

Training Iterations to date ('runs')

%
Correct

100%
Stable best match % (sbmp)

Stable best match % (sbmp) = the best my neural network can match the pattern in the
data
--> will be anywhere less than 100% unless you have really easy data!
NN Error Rate (NER) = 100% - sbmp
i.e. If I use the NN against a 1000 new real items, I will be wrong at least NER * 1000 times.

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Rinse and Repeat: Instability
 If it does not stabilize:

Lower your training coefficients! You are hitting the
NN too hard (and its knuckles are bleeding)

 Beware using multiplicative coefficients unless you really
know what the NN is doing, i.e. Start with those at 1, start
with the additives very small (i.e. < 1/ (1000*{count of
elements in weights matrix to be altered})

Training Iterations to date ('runs')

%
Correct

100%

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Rinse and Repeat: Converges too
Slow

 If it does not converge after several thousand
iterations but is still improving:

Run more iterations or

Increase training coefficients a VERY SMALL
AMOUNT then continue runs

Training Iterations to date ('runs')

%
Correct

100%

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Rinse and Repeat: Converges at a
Low Success Rate

 If the pattern is weak or nearly non-existent, the converged NN
will still have a large error rate

If the NN converges at the % that matches (or is less than)
the maximum of (% of trues/total and % falses/total) in the
training set (i.e. % by luck), then there is no pattern this NN
can find using the training data (like NN2 below)

If it is like NN1 below, (better than % by luck, but below the
desired level), it is a weak pattern for this NN

Training Iterations to date ('runs')

%
Correct

100%

% by luck

% sbmp NN 1

NN1

NN2

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Rinse and Repeat: Fixing a Low
Success Rate

 Many strategies can help with a low rate,
assuming there is a pattern in the overall data
to be found:

Increase the training set size, i.e. Add in more trues
and falses

Increase the number of elements in the Neuron
Layers (i.e. make a bigger [Ni] or [Nj])

As a last resort add in another layer (i.e. add [Nk])

NOTE: every increases time for each run; adding
another layer = exponential increase

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Rinse and Repeat: Time frames

 1 layer: 900 node single layer NN, on Sparc 10,
Solaris, w/512 MB Ram, 989 Reals, 1523 fakes,
10 iterations:

Start Time=Mon Oct 2 15:04:10 2006

End time=Sat Oct 7 21:23:15 2006

 2 layer: Size:300 x 1200 x 800, AMD Dual Core x 1
GHz, 2 GB RAM, SuSE, 989 Reals, 1623 fakes, 10
iterations

Start Time=Mon Jun 11 19:48:50 2007

End time=Thu Jun 14 01:33:32 2007

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

XML and Data Storage 1
 Need to store the weights data for each layer* (*most

important store!)

 Need common storage method for Truth Data

 Need to store training statistics (how did I make my array)

 Need a log file

 Need to make and store configurations data (i.e. Start-up
data for the NN)

 Your NN Core routines (could use a package here) need
to be the same in the training and using programs

 Need a data puller to get real data for use

 Need scripts to run training and usage

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

XML and Data storage 2

 I use XML read into a string delimited by '.'
(names by a '&')in a hash like so:

From 'falses.xml':

<?xml version="1.0" standalone="yes" ?>
<!-- Created Wed Feb 15 20:34:27 2006 -->
<Fake_MicroRNAs>
<miRNA name="test1">
<segment_data>aa</segment_data>
</miRNA>
....
</Fake_MicroRNAs>

$xmldatitem{“XML.Fake_MicroRNAs.miRNA&test1&.segment_data"}=

”aa”

$listofheadings.=“XML.Fake_MicroRNAs.miRNA&test1&.segment_data";

XML Reader (Common) and
Heading Accumulator

From Config File:
FakeHeading=
”XML.Fake_MicroRNAs.miRNA”

$headingslist{
”XML.Fake_MicroRNAs.miRNA”
}=“test1\&test2\&...”;

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

XML and Data Storage 3

 The same method is used to save data like weights

 Iterate though the column size of each Matrix for each row and
accumulate in a string (<row> tags)

 Then Iterate by row (do both in a nested loop):

<?xml version="1.0" standalone="yes" ?>

<!-- Created on Mon Jun 11 19:48:50 2007 -->
<!-- input file real realnewm.xml input fake fakesuperrand.xml --
>
<!-- beta1:0.000000001 beta2:0.000000001 lambda1:0 lambda2:0
shuffles:1 training iterations:10 -->
<NN_weights>
<Matrix_Sizes>{many more entires}</Matrix_Sizes>

<WiT>
<row name="0">3.65851129499352e-06,{many more
entires}</row>
{many more rows}
</WiT>
<WjT>
<row name="0">3.65851129499352e-06,{many more entires}</row>
{many more rows}
</WjT>
<WxT>
<array>0.00125000000000002,{many more entires}</array>
</WxT>
</NN_weights>

print (ORF "<WiT>\n");

for($j=0;$j<$sizeonelayernn;$j++){
$valheren=$wi[$j][0];
print (ORF "<row name\=\"$j\">");
$linestringhere=$valheren;
for($i=1;$i<$inputarryaysize;$i++){
$valheren=$wi[$j][$i];
$linestringhere.="\,$valheren";
}
print (ORF "$linestringhere<\/row>\n");
}
print (ORF "<\/WiT>\n");

Note: for values in hashes, just iterate the headings for the hash after a split of its string
into an heading_array, i.e. foreach $here(@heading_array){}

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Compression

 Weights matrices are VERY large

300 input x 600 node x 500 node in XML,
uncompressed: 9.46 MB

 Some weights matrices are triangular matrices:

Can alter looping to improve speed and also store
only fewer cells

 Easier Method: could use other compression
tools (i.e. Gzip, tar, etc.)

Same 9.46MB weights file win zipped = 97KB

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Using My Trained NN: A DNA
Scanner to Feed Data

 Once I have a fully Trained NN (if ever :0), I can use it to scan
real DNA to find candidate miRNA Hairpins that may be
important

 I need to pull down real DNA sequences from EnSembl, or
NCBI Blast.

 Then I need to build a subroutine to march down the DNA string
in Input Array sized pieces (I need to set a 'Skip Rate'):

Skip Rate of 1 =Scan bases 100 to 400, then bases 101 to
401, etc.

Skip Rate of 10: Scan bases 100 to 400, then bases 111 to
411, then bases 121 to 421, etc.

 Then I run a Forward Pass against each piece using my saved
weights data

 Then I save any thing that has a +1 result.

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Using My Trained NN: Duplicating
Results

 To do a quick confirm of my finds I will do the
following: (to confirm unknown data)

Score the find against known miRNAs

 If it already exists, then I note the location in the DNA
strand stop working that find.

 If it does not exist go to the next verification step

Run a hairpin-maker against it, and see if the
hairpin matches characteristics for known miRNAs
within a margin of error

 If it does have a viable hairpin, NEED TO SAVE IT and
ITS LOCATION...THESE ARE THE PREY I AM AFTER!

 SEND TO RESEARCHERS AT Sanger, Wash U, UMSL,
et al! Publish :0)

 If not, store in discard pile for later examination

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Error Rates Expected
 Error rates: if I scan a 120K base segment, and I have a

99.999% verified NN that uses an input array of 300 bases, and
scan every set (skip rate = 1)

I have 120,000 – 300= 119,700 pre-NN candidates

False Returns at a minimum from the NN: 119,700 *(1-
.99999) = 119,700 *1E-05 = 1

Here is the minimum errors for a NN trained to XX % for 1
Million Bases (a very likely case):

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Conclusion

 MiRNAs are extracted from hairpins, we can try to scan for
more hairpins by training a Neural Network using known data
sets

 Neural Networks emulate real neurons in living animals

Each neuron sums the weights * inputs for each connected
input

 In PERL, nested loops can be used to perform the NN matrix
functions

 XML can be used to store data, which can be pulled into, or
stored from, PERL hashes

 Stable performance is a function of how well the NN can see
the pattern, if any, in the truth data

 The better trained the NN, the lower the false return count.

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Future Work

 Currently, my best NN s train @ ~85% using 2
layers for miRNA hairpins

Pattern is still weak

 Investigating bigger arrays, more layers

 Created a multi-purpose. Multi-layer (any #
layers) trainer and scanner. Investigating a self
expanding, self sizing NN also.

 Investigating other DNA features.

 Starting a pattern recognizer for plankton
identification using same core.

 Investigating analogs of living NN to look at
functions (i.e. Human eyes, Fish brains, etc.)

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

References and Future Reading
 [Hayken,1994] Neural Networks: A Comprehensive Foundation, S. Hayken, Macmillian College Publishing,Inc., NY,

1994

 [B. Meyer 1996] “Use of a Neural Network with Supervised Learning to Simulate the Feeding Response Behaviour of a
Largemouth Bass “ by Bryce L. Meyer, 15 April 1996. On-line at http://www.combat-fishing.com/NeuralNet/FILBFRT.htm

 [Sanger, 2006] Sanger miRBase:

– Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. “miRBase: microRNA sequences, targets and
gene nomenclature.”NAR, 2006, 34, Database Issue, D140-D144

– Griffiths-Jones S.“The microRNA Registry.” NAR, 2004, 32, Database Issue, D109-D111

– http://microrna.sanger.ac.uk/sequences/search.shtml

• [Ensebml, 2006] Ensembl:
– T. Hubbard, D. Andrews, M. Caccamo, G. Cameron, Y. Chen, M. Clamp, L. Clarke, G. Coates, T. Cox, F. Cunningham,

V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, J. Gilbert, M. Hammond, J. Herrero, H. Hotz, K.
Howe, V. Iyer, K. Jekosch, A. Kahari, A. Kasprzyk, D. Keefe, S. Keenan, F. Kokocinsci, D. London, I. Longden, G.
McVicker, C. Melsopp, P. Meidl, S. Potter, G. Proctor, M. Rae, D. Rios, M. Schuster, S. Searle, J. Severin, G. Slater, D.
Smedley, J. Smith, W. Spooner, A. Stabenau, J. Stalker, R. Storey, S. Trevanion, A. Ureta-Vidal, J. Vogel, S. White, C.
Woodwark and E. Birney Ensembl 2005 Nucleic Acids Res. 2005 Jan 1;33 Database issue:D447-D453.
doi:10.1093/nar/gki138

• http://www.ensembl.org/Homo_sapiens/contigview?chr=11&vc_start=57163247&vc_end=57167335

• Legendre M, Lambert A, Gautheret D, 2005. "Profile-based detection of microRNA precursors in animal genomes",
Bioinformatics 2005 21(7):841-845.

• Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing
JR, Jacks T, Horvitz HR, Golub TR."MicroRNA expression profiles classify human cancers.", Nature, 2005 Jun 9;435(7043):834-
8.

• Brown J.R., Sanseau P., 2005. "A computational view of microRNAs and their targets" Drug Discovery Today, Volume 10,
Number 8, April 2005.

• Ambion,"microRNAs: Processing",online at: http://www.ambion.com/techlib/resources/miRNA/mirna_pro.html ©Copyright 2006
Ambion, Inc.

http://www.combat-fishing.com/NeuralNet/FILBFRT.htm
http://www.combat-fishing.com/NeuralNet/FILBFRT.htm
http://www.combat-fishing.com/NeuralNet/FILBFRT.htm
http://microrna.sanger.ac.uk/sequences/search.shtml
http://microrna.sanger.ac.uk/sequences/search.shtml
http://www.ensembl.org/Homo_sapiens/contigview?chr=11&vc_start=57163247&vc_end=57167335
http://www.ensembl.org/Homo_sapiens/contigview?chr=11&vc_start=57163247&vc_end=57167335
http://www.ensembl.org/Homo_sapiens/contigview?chr=11&vc_start=57163247&vc_end=57167335
http://www.ensembl.org/Homo_sapiens/contigview?chr=11&vc_start=57163247&vc_end=57167335
http://www.ensembl.org/Homo_sapiens/contigview?chr=11&vc_start=57163247&vc_end=57167335
http://www.ensembl.org/Homo_sapiens/contigview?chr=11&vc_start=57163247&vc_end=57167335
http://www.ensembl.org/Homo_sapiens/contigview?chr=11&vc_start=57163247&vc_end=57167335

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

QUESTIONS?

QUESTIONS? Hit my emails Or ask at next
SLUUG meeting.

Thank You for listening and Good Luck on your
own expeditions!

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

BACKUPS

BACKUPS

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Before Exploring in the Unknown

 To make sure I didn't mess up:

Run the DNA Scanner and trained NN on areas of
DNA known to contain miRNA precursors

Download the regions and put into my XML format
using my data grabber (use NCBI Blast or Ensembl)

Did I find the known segments for the known
miRNAs?

If so, then the hunt is on!

For other NN uses, you should use a second set of
data you are certain of, to really prove your NN
works.

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Exploring: The Hunt, 1

 Pick a region of DNA ahead (in mRNA
processing order) ahead of known disease
gene locations, or begin a blind scan of the
unknown sections of each chromosome.

 Use a data puller to grab a segment (say 0.5
Million Bases +/-)

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Exploring: The Hunt, 2

 Set a Skip Rate for as low as your processor
can do in a realistic time period

 Expect a week long run for 500K bases, skip
rate of 1, on a dual core AMD, 2GB RAM

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Why am I doing this?
 An outgrowth of graduate work from my two grad

degrees. (Started the base N.N. core in '96 (see [B.
Meyer 1996]), started using N.N.s for miRNAs in '06)

 Good excuse to use Neural Networks which provide
insight to how a lot of nerve biology works.

 Takes advantage of Internet available genetic
resources

 Server horsepower is now cheap.

Started on 80386 Windows, then to Sun Solaris,
then to SuSE

 I may actually find a cause/cure for a disease.

You might find a cure also!

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Problem: Why are miRNAs Important?

• As siRNAs (small interfering RNAs):
Interacting w/ proteins, binding sites, mRNA
translation.

• Associated with Cancer Causing Genes
(Oncogenes): such as Leukemia and Breast
Cancer.

• More uses found as time progresses

[Lu J, Getz G, Miska EA et al. 2005.]

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

Problem: How are miRNAs Processed?

 Many Micro-RNAs are components
of an imperfect hairpin loop in
mRNA

mRNA is transcribed from DNA

Sections can have areas that self
compliment, forming a „hairpin‟ loop
(composed of stem and loop sections).

A section of the hairpin is chopped out
(the precursor) and processed to make
final microRNA (can be on forward,
reverse, a combination, or from
multiple hairpins)

Loop

Stem
(Reverse
section)

Stem
(Forward
section)

3) miRNA precursor processed
again by enzymes for final
miRNA

2) miRNA “hairpin”
precursor

1) mRNA transcribed

Dicer et al.

For more detailed information see:
Ambion Website: http://www.ambion.com/techlib/resources/miRNA/mirna_pro.html

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

IE: Base Complimenting
 We may want to compliment the bases to make

a mirror image of the DNA strand (or RNA
Strand)

A pairs with T (or U), G with C

 Hashes are good for this:

This tells me if two bases are compliments
$cscore{"a"}{"t"}=1;$cscore{"t"}{"a"}=1;
$cscore{"a"}{"u"}=1;$cscore{"u"}{"a"}=1;
$cscore{"c"}{"g"}=1;$cscore{"g"}{"c"}=1;

This tells me what the compliment of a base is.
$complbase{"c"}="g";$complbase{"g"}="c";
$complbase{"a"}="u";
$complbase{"t"}="a";$complbase{"u"}="a";

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

0.125 0.125 0.125 0.125 Wi

0.125 0.125 0.125 0.125

-1 1 1 -1

-1.240 1.510 1.510 -1.240 -0.375dWi

-1.240 1.510 1.510 -1.240 -0.375

1.24 1.51 1.51 1.24

1.24 1.51 1.51 1.24 11

0.11 0.14 0.14 0.11 Wi'

0.11 0.14 0.14 0.11

0.11 0.14 0.14 0.11

0.11 0.14 0.14 0.11

slides and PERL/XML code © 2009 Bryce L. Meyer except as noted: Use with Code w/Caution :0)

$tdwo1=($correctactionresp-$preimpulse);

$tempdeltawo=$betathree*$tdwo1*@nnlayerj[$k]+$lambdathree;

@wx[$k]=@wx[$k]+$tempdeltawo;

$tempdnjk=$correctactionresp-
@jipre[$k];$tempdeltaone=$betatwo*$tempdnjk*@yipre[$j]+$lambdatwo
;

$wj[$k][$j]=$wj[$k][$j]+$tempdeltaone;

$tempdne=$correctactionresp-@yipre[$j];
$tempdeltaone=$betaone*$tempdne*@arraybinseq[$i]+$lambdaone;
$wi[$j][$i]=$wi[$j][$i]+$tempdeltaone;

