
ATC Apps Journey to Private Cloud

Matt Skipton World Wide Technology
Advanced Technology Center



Background
• The ATC has specific, custom, apps that need to run in the ATC

• POC management
• ATC utilities
• Platform proxies
• Lab management

• Different languages and stacks
• Microservices framework creates lots of small apps – eases development and reusability 

but makes traditional hosting problems worse



In the beginning….
• Traditional app hosting
• VM’s for dev/test/prod
• Problems with this method

• No app HA/scalibility
• Different versions of frameworks could conflict
• Logging & monitoring inconsistent
• Host(vm) maintenance required all apps to go down
• VM’s with full server OS
• Mapping ports to apps
• Complex/Disjointed CD pipeline
• Complex stack more brittle
• Slow to provision
• Microservice routing complexity



What should we do?



Lets Go to Containers!
• Problems containers solve

• Framework conflicts
• Provisioning speed
• Simplified CD Pipeline
• App build config lives with code
• Consistent deployment on dev laptop and prod

• Unsolved Problems
• No app HA/scalibility
• Logging & monitoring inconsistent
• Host(vm) maintenance required all apps to go down 
• Mapping ports to apps



Lets add a container orchestration layer!
• There are many container orchestration solutions
• MesoSphere
• Cloud Foundry
• Docker Swarm
• Kubernetes (the industry leader)

• Problems Kubernetes solves
• App HA / Scalability
• Host(vm) maintenance without downtime
• Automatic app communication routing

• Unsolved problems
• Logging becomes consistent but still needs to be sent somewhere for aggregation
• No tracing of packets for troubleshooting
• Possible security concerns
• No host monitoring
• Complex to deploy
• RBAC is hard!



What is Kubernetes (k8s)?
• Started at Google
• Open Source
• Maintained by the supported by 

the Cloud Native Computing 
Foundation https://www.cncf.io 

• Applications are defined through a 
declarative model in YAML

• kubectl – CLI management app
• Many GUI management options

• https://www.cncf.io/the-childrens-
illustrated-guide-to-kubernetes/

Kubernetes (K8s) is an open-source system for 
automating deployment, scaling, and 
management of containerized applications.

It groups containers that make up an application 
into logical units for easy management and 
discovery. Kubernetes builds upon 15 years of 
experience of running production workloads at 
Google, combined with best-of-breed ideas and 
practices from the community.

- https://kubernetes.io

https://www.cncf.io/
https://www.cncf.io/the-childrens-illustrated-guide-to-kubernetes/
https://kubernetes.io/


Kubernetes it is, but how to deploy & maintain?
• Plain OSS “manual install” Kubernetes
• RedHat OpenShift
• Pivotal PKS
• Amazon EKS
• Azure AKS
• Google GKE
• Ubuntu/Cononical Juju/Conjure-Up
• Terraform
• Rancher



Why Rancher
• Works with on-prem vSphere and major 

cloud providers

• Easy to deploy / manage many Kubernetes 
clusters (we have 6 today)

• All VM’s can be replaced at any time (cattle 
not pets)

• OSS Product is solid, can get support if we 
want

• Provides good management interface for 
users

• Makes Kubernetes RBAC much easier

• Provides host monitoring



How we are built
• Kube nodes in VM’s for flexibility

• Worker nodes in dedicated subnet 
to ease load balancing

• All apps deploy with multiple 
replicas (with a couple exceptions)

• F5 for initial SSL termination, SAML 
Auth, and Load Balancing

• Custom CI/CD pipeline using 
Jenkins and custom code



Let’s build a cluster

1. Initial cluster build
2. Deploy a simple web app
3. Deploy from Rancher catalog / helm



RancherOS

A Lightweight Container Operating System

RancherOS includes the bare minimum amount of software needed to run 
Docker. Everything else can be pulled dynamically through Docker. 
RancherOS makes it simple to run containers at scale in development, test, 
and production. By containerizing system services and leveraging Docker for 
management, the operating system provides a very reliable and easy to 
manage container-ready environments.
- https://rancher.com/rancher-os/

https://rancher.com/rancher-os/


Unsolved Problem - Logging stack
• We decided on Prometheus and Grafana

• standard in the Kubernetes world
• Open Source and well documented
• more in-depth monitoring of workloads

• We decided on fluentd, Elasticsearch, and Kibana
• standard in the Kubernetes world
• Open Source and well documented
• Aggregates logs in 1 console for cross referencing



Unsolved Problem – Understanding Microservices
• Service Mesh – Istio

• Why we use it today
• Understanding service dependencies
• Network level tracing (up to layer 7)
• Impose rules at layer 7 for specific apps
• http status monitoring (are we erroring often)
• Additional security

• Other features for the future
• Zero Trust environment support
• Added code level features - circuit breakers



Benefits we have seen with this configuration
• We have re-deployed all nodes many times without service interruption
• Clean consistent CD pipeline
• Fast deployment of new apps in HA config
• Made us aware of application level issues we didn’t have visibility to before
• Troubleshooting is easier



Conclusions
• Containers and Kubernetes and Service mesh’s can solve a lot of app deployment issues 

and they are advancing at a rapid pace

• They are made up of many different tools that require a lot of choices and automation to 
work well

• Kubernetes is very complex to deploy but, many of our partners have developed solutions 
to help get it running

• Service Mesh can add a lot of visibility/functionality/security to your current apps but 
requires a lot of configuration to implement



Definitions
• Container

• A standard unit of software that packages up code and all its dependencies so the application runs quickly 
and reliably from one computing environment to another. Container images are lightweight, standalone, 
executable packages. When a container is launched it is isolated as much as possible form the OS which 
provides security and consistent behavior. 

• Kubernetes
• A container orchestration layer. It provides features on top of existing container benefits. Such as: network 

mapping, load balancing / HA, scalability, storage mapping, and management.
• Pod

• A grouping of containers that execute on the same host. They are managed as 1 unit.
• Sidecar

• A container in a POD that is not the main application. It provides additional services to the main application. 
Ex: Istio proxy where all network traffic routes through it on the way to the main container.

• Service Mesh
• A grouping of proxies that live next to each application, have configurable rules, low-latency infrastructure, 

and high throughput. They provide rule driven routing, service discovery, load balancing, encryption, 
observability, traceability, authentication and authorization.



Questions?


