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What is a Shell?

● The shell interprets commands and executes 
them
– It provides you with an environment in which to 

work
– It provides an entire programming language 

which can be used either in scripts or directly 
from the command line
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Why Bash?

● It is the standard shell on Linux and is 
available for almost every version of Unix

● As we'll see, it is feature-rich
● It is mostly compatible with the earlier 

Bourne shell and Korn shell
● It is even available for Windows under 

Cygwin
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What We'll Cover

● Metacharacters
● Variables
● Quoting
● Pattern Matching
● File Descriptors and 

Redirection
● Built-in Commands
● Startup Files
● Keyboard Shortcuts

● History
● Job Control and 

Processes
● Options
● Tests
● Flow Control
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Metacharacters

● Metacharacters are used to pass special 
directions to the shell. They include *,
[ ],?,&,`,\,{ },> ,>>,<,( ), ;,/, $, and |

● Metacharacters must be escaped if you do 
not want them interpreted by the shell  
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Escaping Metacharacters
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Variables

● Variables are containers for some value
● They are designated by a '$' unless they are 

being initialized
● They are restricted to the current shell unless 

they are exported
● View them with the 'env' command
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Variable Expansion

● If there is any ambiguity over exactly what 
the variable is, use {} to specify
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Unexported Variables
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Exported Variables
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Special Variables

● $? - exit code of the last command
● $! - PID of last backgrounded command
● $$ - PID of current shell
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Built-in Variables

● PS1
● PS2

● HOME
● PATH

● HISTFILESIZE
● HISTSIZE
● OLDPWD
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Quoting (from Uwe Waldman)

● Single quotes ('...') protect everything (even 
backslashes, newlines, etc.) except single 
quotes, until the next single quote. 

● Double quotes ("...") protect everything 
except double quotes, backslashes, dollar 
signs, and backquotes, until the next double 
quote. A backslash can be used to protect 
", \, $, or ` within double quotes. A backslash-
newline pair disappears completely; a 
backslash that does not precede ", \, $, `, or 
newline is taken literally. 
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Quoting Examples
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Pattern Matching

● ? matches one character
● * matches zero or more characters
● [] is used to match characters in between 

brackets
● [a-z] will match any lowercase letter
● [1-9] will match any digit
● {} will match a comma-separated list 

{local,lib} will match either 'local' or 'lib'
● {} can also be used to generate substrings
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Examples of Pattern Matching
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Substrings

● {}  can be used to match substrings
● ${VAR:0} is the entire variable name
● ${VAR:0:1} returns the first character
● ${VAR:0:2} returnes the first two
● ...and so on. The first digit is your start 

position, the second is the number of digit to 
return
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Substring Example
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Posix Character Classes 
Support

● alnum
● alpha   
● ascii   
● blank   
● cntrl   
● digit   
● graph   
● lower

● print   
● punct  
● space  
● upper   
● word    
● xdigit
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Character Class Examples
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File Descriptors

● By default, there are three file descriptors
– 0, STDIN
– 1, STDOUT
– 2, STDERR

● They are all pointed to your terminal by 
default, but can be re-directed
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Redirection Operators

● | takes the output of one command and feeds 
it into another

● > redirects STDOUT and overwrites
● >> redirects STDOUT and appends
● < redirects STDIN
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Redirection Example
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Using Redirection to Read Files
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More Redirection – Tying 
STDOUT and STDERR
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Opening and Closing File 
Descriptors
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Here Documents

● Here documents redirect multiple lines of 
input easily. 

● They are often used in shell scripts and are 
ended by an arbitary string, which by 
convention is often 'EOF'
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Here Document Example
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Built-in Commands

● cd
● eval
● exec
● exit
● export
● test

● alias
● unset
● echo
● shopt
● source
● ulimit
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Startup Files 

● Login shells (those that had to start via 
/bin/login reading /etc/passwd) use these 
files, in order
– /etc/profile
– .bash_profile
– .bash_login
– . .profile
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Startup Files (continued)

● Non-login shells only read .bashrc
● It is not unusual for .bash_profile to source 

.bashrc
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Keyboard shortcuts

● The readline library is used by bash to 
provide command-line editing
– CTL-A – go to beginning of line
– CTL-E – go to end of line
– CTL-U – erase all of line
– CTL-K – erase from cursor to end of line
– CTL-R – reverse search
– CTL-D – logout (technically EOF, and only at the 

beginning of a line – otherwise, delete)
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History

● Up arrow - go one command back in history
● The 'history' command shows the last ten 

commands and their numbers ('history -n' 
shows the last n commands)

● The 'fc' command can be used to edit and 
execute earlier commands

● The last command is aliased as '!!'
● The last argument to the last command is 

aliased as '!$'
●  Other arguments have numbers assigned to 

them
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History Examples
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'history' and 'fc'

● The 'history' command recalls prior 
commands by number. You can specify n 
commands to recall with 'history n'

● 'fc' does much the same thing when run as 
'fc -l'

● 'fc n' drops you into an editor (you may need 
to define your editor in $FCEDIT) to edit 
command n. Once you save and quit, your 
edited command is run.
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Job Control

● Commands can be backgrounded with '&'
● Commands can be foregrounded with 'fg'
● Commands can be suspended with CTL-Z
● Commands can be killed with CTL-C
● Suspended jobs can be listed with the 'jobs' 

command
● Suspended jobs can be killed with 'kill %n' 

where n is the job number
● Backgrounded jobs can be detached from a 

terminal with 'disown'
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Job Control (continued)

● Process can be started in subshells with 
parentheses

● Commands can be run in backticks to 
capture their output
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Subshells

● A subshell is spawned by commands run 
inside of parentheses. When these 
commands are finished, the state of the 
parent shell is maintained. Subshells inherit 
the parent shell's environment.
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Subshells in SSH
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Command Substitution

● `` (backticks) are used to run a command 
and send its output to a variable or another 
command
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Options

● Options can be configured with 'set -o 
optionname'

● They are un-configured with 'unset 
optionname'

● Some interesting options:
– emacs|vi
– noclobber
– ignoreeof
– noglob
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More options

● Options can be configured with the built-in 
shopt command
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Math  Examples
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Tests

● Tests are used to evaluate the truth of an 
expression

● 'test expr'  and '[ expr ]' are equivalent. [ is a 
built-in command

● '[[ expr ]]' is an alternate syntax, without file 
globbing. [[ is a reserved word

● Tests are generally negated with '!'
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File Tests

● -d Directory
● -e Exists 
● -f Regular file
● -h Symbolic link (also -L)
● -p Named pipe
● -r Readable by you
● -s Not empty
● -wWritable by you



46

Numeric Tests

● -lt – less than
● -gt – greater than
● -eq – equal to
● -le – less than or equal to
● -ge – greater than or equal to
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String Comparisons and Tests

● =,== Equal to
● != Not equal to
● > ASCII value is greater than
● < ASCII value is less than
● -z String is zero length
● -n String is not null 
● Caution – always quote strings when testing 

them!



48

Single Bracket Tests

● Note the errors!
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Double Bracket Tests



50

Compound Tests

● Use '-o' and '-a' inside of test/single brackets
● The equivalents in [[ are '&&' and '||'
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Flow Control

● If – do something if condition is true
● If -then-else – do one thing if something is 

true, otherwise do something else
● For – do something upon each member of a 

list
● While
● Until
● Case – like 'if-then-else' but gracefully 

handles more possibilities
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If
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If-then-else
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For
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While
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Until
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Case
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Questions?
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