
Bashed One Too Many Times

Features of the Bash Shell
St. Louis Unix Users Group

Jeff Muse, Jan 14, 2009

2

What is a Shell?

● The shell interprets commands and executes
them
– It provides you with an environment in which to

work
– It provides an entire programming language

which can be used either in scripts or directly
from the command line

3

Why Bash?

● It is the standard shell on Linux and is
available for almost every version of Unix

● As we'll see, it is feature-rich
● It is mostly compatible with the earlier

Bourne shell and Korn shell
● It is even available for Windows under

Cygwin

4

What We'll Cover

● Metacharacters
● Variables
● Quoting
● Pattern Matching
● File Descriptors and

Redirection
● Built-in Commands
● Startup Files
● Keyboard Shortcuts

● History
● Job Control and

Processes
● Options
● Tests
● Flow Control

5

Metacharacters

● Metacharacters are used to pass special
directions to the shell. They include *,
[],?,&,`,\,{ },> ,>>,<,(), ;,/, $, and |

● Metacharacters must be escaped if you do
not want them interpreted by the shell

6

Escaping Metacharacters

7

Variables

● Variables are containers for some value
● They are designated by a '$' unless they are

being initialized
● They are restricted to the current shell unless

they are exported
● View them with the 'env' command

8

Variable Expansion

● If there is any ambiguity over exactly what
the variable is, use {} to specify

9

Unexported Variables

10

Exported Variables

11

Special Variables

● $? - exit code of the last command
● $! - PID of last backgrounded command
● $$ - PID of current shell

12

Built-in Variables

● PS1
● PS2

● HOME
● PATH

● HISTFILESIZE
● HISTSIZE
● OLDPWD

13

Quoting (from Uwe Waldman)

● Single quotes ('...') protect everything (even
backslashes, newlines, etc.) except single
quotes, until the next single quote.

● Double quotes ("...") protect everything
except double quotes, backslashes, dollar
signs, and backquotes, until the next double
quote. A backslash can be used to protect
", \, $, or ` within double quotes. A backslash-
newline pair disappears completely; a
backslash that does not precede ", \, $, `, or
newline is taken literally.

14

Quoting Examples

15

Pattern Matching

● ? matches one character
● * matches zero or more characters
● [] is used to match characters in between

brackets
● [a-z] will match any lowercase letter
● [1-9] will match any digit
● {} will match a comma-separated list

{local,lib} will match either 'local' or 'lib'
● {} can also be used to generate substrings

16

Examples of Pattern Matching

17

Substrings

● {} can be used to match substrings
● ${VAR:0} is the entire variable name
● ${VAR:0:1} returns the first character
● ${VAR:0:2} returnes the first two
● ...and so on. The first digit is your start

position, the second is the number of digit to
return

18

Substring Example

19

Posix Character Classes
Support

● alnum
● alpha
● ascii
● blank
● cntrl
● digit
● graph
● lower

● print
● punct
● space
● upper
● word
● xdigit

20

Character Class Examples

21

File Descriptors

● By default, there are three file descriptors
– 0, STDIN
– 1, STDOUT
– 2, STDERR

● They are all pointed to your terminal by
default, but can be re-directed

22

Redirection Operators

● | takes the output of one command and feeds
it into another

● > redirects STDOUT and overwrites
● >> redirects STDOUT and appends
● < redirects STDIN

23

Redirection Example

24

Using Redirection to Read Files

25

More Redirection – Tying
STDOUT and STDERR

26

Opening and Closing File
Descriptors

27

Here Documents

● Here documents redirect multiple lines of
input easily.

● They are often used in shell scripts and are
ended by an arbitary string, which by
convention is often 'EOF'

28

Here Document Example

29

Built-in Commands

● cd
● eval
● exec
● exit
● export
● test

● alias
● unset
● echo
● shopt
● source
● ulimit

30

Startup Files

● Login shells (those that had to start via
/bin/login reading /etc/passwd) use these
files, in order
– /etc/profile
– .bash_profile
– .bash_login
– . .profile

31

Startup Files (continued)

● Non-login shells only read .bashrc
● It is not unusual for .bash_profile to source

.bashrc

32

Keyboard shortcuts

● The readline library is used by bash to
provide command-line editing
– CTL-A – go to beginning of line
– CTL-E – go to end of line
– CTL-U – erase all of line
– CTL-K – erase from cursor to end of line
– CTL-R – reverse search
– CTL-D – logout (technically EOF, and only at the

beginning of a line – otherwise, delete)

33

History

● Up arrow - go one command back in history
● The 'history' command shows the last ten

commands and their numbers ('history -n'
shows the last n commands)

● The 'fc' command can be used to edit and
execute earlier commands

● The last command is aliased as '!!'
● The last argument to the last command is

aliased as '!$'
● Other arguments have numbers assigned to

them

34

History Examples

35

'history' and 'fc'

● The 'history' command recalls prior
commands by number. You can specify n
commands to recall with 'history n'

● 'fc' does much the same thing when run as
'fc -l'

● 'fc n' drops you into an editor (you may need
to define your editor in $FCEDIT) to edit
command n. Once you save and quit, your
edited command is run.

36

Job Control

● Commands can be backgrounded with '&'
● Commands can be foregrounded with 'fg'
● Commands can be suspended with CTL-Z
● Commands can be killed with CTL-C
● Suspended jobs can be listed with the 'jobs'

command
● Suspended jobs can be killed with 'kill %n'

where n is the job number
● Backgrounded jobs can be detached from a

terminal with 'disown'

37

Job Control (continued)

● Process can be started in subshells with
parentheses

● Commands can be run in backticks to
capture their output

38

Subshells

● A subshell is spawned by commands run
inside of parentheses. When these
commands are finished, the state of the
parent shell is maintained. Subshells inherit
the parent shell's environment.

39

Subshells in SSH

40

Command Substitution

● `` (backticks) are used to run a command
and send its output to a variable or another
command

41

Options

● Options can be configured with 'set -o
optionname'

● They are un-configured with 'unset
optionname'

● Some interesting options:
– emacs|vi
– noclobber
– ignoreeof
– noglob

42

More options

● Options can be configured with the built-in
shopt command

43

Math Examples

44

Tests

● Tests are used to evaluate the truth of an
expression

● 'test expr' and '[expr]' are equivalent. [is a
built-in command

● '[[expr]]' is an alternate syntax, without file
globbing. [[is a reserved word

● Tests are generally negated with '!'

45

File Tests

● -d Directory
● -e Exists
● -f Regular file
● -h Symbolic link (also -L)
● -p Named pipe
● -r Readable by you
● -s Not empty
● -wWritable by you

46

Numeric Tests

● -lt – less than
● -gt – greater than
● -eq – equal to
● -le – less than or equal to
● -ge – greater than or equal to

47

String Comparisons and Tests

● =,== Equal to
● != Not equal to
● > ASCII value is greater than
● < ASCII value is less than
● -z String is zero length
● -n String is not null
● Caution – always quote strings when testing

them!

48

Single Bracket Tests

● Note the errors!

49

Double Bracket Tests

50

Compound Tests

● Use '-o' and '-a' inside of test/single brackets
● The equivalents in [[are '&&' and '||'

51

Flow Control

● If – do something if condition is true
● If -then-else – do one thing if something is

true, otherwise do something else
● For – do something upon each member of a

list
● While
● Until
● Case – like 'if-then-else' but gracefully

handles more possibilities

52

If

53

If-then-else

54

For

55

While

56

Until

57

Case

58

References

 http://www.gnu.org/software/bash/manual/bashref.html
 http://tldp.org/LDP/abs/html/
 http://learnlinux.tsf.org.za/courses/build/shell-scripting/ch12s04.html
 http://linuxshellaccount.blogspot.com/2008/02/finding-and-reading-files-in-shell-when.html

http://www.gnu.org/software/bash/manual/bashref.html
http://tldp.org/LDP/abs/html/
http://learnlinux.tsf.org.za/courses/build/shell-scripting/ch12s04.html
http://linuxshellaccount.blogspot.com/2008/02/finding-and-reading-files-in-shell-when.html

59

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

