
Using Dump & Restore for Backups

Dump and Restore on OpenBSD and Ubuntu Linux
Distros

What is Dump and Restore?

Dump is a software for doing backups of the files on your Linux or
OpenBSD computer.

Restore is the software that restores those backups. Restore can
restore the entire backup or a portion of it in interactive mode.

In OpenBSD Dump and Restore are part of the base system. For
Ubuntu Linux, Dump has to be installed with apt-get:
sudo apt-get install dump
the associated Restore program is part of the Dump package and will
be installed at the same time as Dump.

The Benefits of Dump and Restore

The dump command builds a list of files that have been modified
since the a previous dump, then packs those files into a single file to
archive to an external device. Dump has several advantages over
other utilities:
 Files of any type (even devices) can be backed up and restored.
 Permissions, ownerships and modification times are preserved.
 Files with holes are handled correctly.
 Backups can be performed incrementally[1].

1. From UNIX System Administration Handbook, by Evi Nemeth, 3rd Ed., pg. 176.

Backing up files with Dump

These instructions presume you are using an external HDD.
To dump files on OpenBSD, use the following command:
dump -0 -f /mnt/feb.dump jon/Howard.rtf jon/howard.*
this command copies all files named howard.* and the sole rtf, Howard.rtf
to the external hard drive.
Another dump:
Unmount /home so that no activity is going on. /dev/rwd0g is the partition that
/home resides on.
umount /home
Then do: # dump -2au -f /mnt/bsd/OpenBSD_lvl2.dump /dev/rwd0g
This copies the latest additions to the home directory (/dev/wd0g) to the file
OpenBSD_lvl2.dump, a level two dump. The switches -2 gives the dump level and -a
means bypass tape length calculations. The switch -u means update /etc/dumpdates

Backing up files with Dump
The most important options for dump are the following:
-0, -1, -2, -9

These options indicate the level of the dump this command will perform. Given any
level n, dump will search dumpdates for an entry reporting the last time this
filesystem was dumped at level n-1 or lower. dump then backs up all files that have
been changed since this date. If n is zero, dump will back up the entire file system. If
there is no record of a backup for this file system for level n—1 or lower, dump will
also back up the entire filesystem. If no level option is specified, it defaults to -9.
This option does not require any argument.

-u
If dump finishes successfully, this option updates its history file dumpdates (in
OpenBSD: /etc/dumpdates). It does not require an argument,

Backing up files with Dump
The most important options for dump are the following:
-f

This option states that you want to send the dump to something other than the
default tape drive (i.e., to a file or to another device). If you use this option, it must
have an argument, and this argument must precede the filesystem being dumped. A
value of “-” (a single hyphen) for its argument indicates standard output.[2]
Example:
dump -0 -a -u -f /mnt/OpenBSD_lvl0.dump /dev/rwd0g

 This is a level zero dump
 It is dumping to an external hard drive (-f switch)
 -u means update /etc/dumpdates
 -a “auto size”. Bypass all tape length considerations, and enforce writing until an end-

of-media indication is returned

[2] Essential System Administration, Aeleen Frisch, 3rd Edition, page 733

What is the problem when dumping live filesystems?
From Source Forge “Is Dump Deprecated”

The problem is that the filesystem may be changing while you are dumping it. You have this problem with all backup
utilities, but with dump it is more serious. When you are using tar, for example, a file could be changed at the time it
is read by tar; in that case, that particular file would be corrupted in the resulting tar file. But whereas for tar this is a
problem only if it so happens that the file is changed the instant it is read, dump could backup corrupted versions of
files if they changed some time before dump attempts to read them. Let's see why.
 The kernel caches write operations to the disk. You can see this for yourself if you make some experiments with a
floppy. Insert a floppy in the drive, mount it, and copy a file to the floppy; the operation, especially with recent 2.4
kernels, will appear to finish instantly. You can then do something like ls /mnt/floppy and see that your file is on the
disk. But your file is not really on the disk; the drive's light hasn't been on at all. If you looked at the disk through
/dev/fd0, you wouldn't find your file there.
 You can force the file to be actually written to the diskette by unmounting the diskette, or with the sync command;
if you don't, the kernel will write the file on the disk when it sees it fit to do so. What's more, the kernel might
actually write half the file on the disk, and I guess that this will be usual with hard disks; when there are lots of
pending write operations at approximately the same physical area of the disk, the kernel will probably choose to
flush them, but it will probably choose not to flush other pending operations at distant areas, so as to minimize
head movement. Thus, when dump reads the filesystem through the block device, it will get corrupted versions of
some files if there are pending write operations; even worse, the metadata (filesystem structure) could be corrupt,
in which case (a part of) the filesystem could become entirely unreadable.

https://dump.sourceforge.io/isdumpdeprecated.html

What is the problem when dumping live filesystems?
From Source Forge “Is Dump Deprecated” Can I use dump, then?
 Dump is a really popular backup solution among Unix system administrators worldwide, and it is not because
those administrators are ignorant of the problems.
 First, you can safely use dump on unmounted and read-only filesystems. You can also safely use dump on idle
filesystems if you sync before dumping (but can you be sure they are idle? a solution is to remount them read-only
before dumping).
 You can also use dump on non-idle filesystems, but with caution. You must take care to dump when the
filesystem is not heavily loaded; for example, I dump during the night, when only logfiles and mailboxes are
modified, and not heavily. If your filesystem is always on heavy load, maybe you shouldn't use dump. In addition,
you should verify your backups.
 Doing a dump on an idle but live file system is sometimes neccessary as the default install on manyLinux
distributions hang everything off “/” Like so:

$ df -h
udev 7.7G 0 7.7G 0% /dev
tmpfs 1.6G 1.8M 1.6G 1% /run
/dev/nvme0n1p5 179G 68G 102G 41% /
tmpfs 7.7G 0 7.7G 0% /dev/shm

The whole file system on my Mint Linux hangs on /dev/nvme0n1p5. Unmounting “/” will shutdown your computer

https://dump.sourceforge.io/isdumpdeprecated.html

What is the problem when dumping live filesystems?
From Source Forge “Is Dump Deprecated” If dump has these problems why not use something else?

1. The fact that dump reads the block device directly gives it several advantages. First, you can dump unmounted
file systems. It has been reported that this is particularly useful in cases of filesystem error which renders it
unmountable; in those cases, it is useful to dump the filesystem (to the extent possible) before attempting to
fsck it, in case fsck causes further data loss.

2. Dump never changes the filesystem while dumping it. The problem with tar and cpio is that they change a
normally mounted read-write filesystem while reading it. The filesystem keeps three times for each file: the last
modification time (mtime), the last access time (atime), and the last i-node modification time (ctime). When you
read a file through a normal system call, its atime is set to the time of the access. You could then issue another
system call to revert atime to its original value, as GNU tar does when given the --atime-preserve option, but in
that case ctime changes to indicate an i-node modification. There is no system call to change ctime.

3. Dump's third advantage is that it works faster, because it bypasses the kernel's filesystem interface. I don't have
any experience on this, but I suspect that now that the machines are faster and the filesystem caches are much
larger, this advantage is less important than what it used to be.

https://dump.sourceforge.io/isdumpdeprecated.html

Only level 0 dumps can be performed on individual directories. An incremental
dump could be done on /dev/nvme0n1p5 but not on /home

$ sudo dump -0a -f LinuxMintHomeLvl0.dump /home
 DUMP: Date of this level 0 dump: Fri Aug 5 13:13:16 2022
 DUMP: Dumping /dev/nvme0n1p5 (/ (dir home)) to LinuxMintHomeLvl0.dump
 DUMP: Label: none
 DUMP: Writing 10 Kilobyte records
 DUMP: mapping (Pass I) [regular files]
 DUMP: mapping (Pass II) [directories]
 DUMP: estimated 42326263 blocks.
 DUMP: Volume 1 started with block 1 at: Fri Aug 5 13:13:16 2022
 DUMP: dumping (Pass III) [directories]
 DUMP: dumping (Pass IV) [regular files]
 DUMP: 28.89% done at 40755 kB/s, finished in 0:12
 DUMP: 57.97% done at 40896 kB/s, finished in 0:07
 DUMP: 87.88% done at 41328 kB/s, finished in 0:02
 DUMP: Closing LinuxMintHomeLvl0.dump
 DUMP: Volume 1 completed at: Fri Aug 5 13:30:23 2022
 DUMP: Volume 1 42313570 blocks (41321.85MB)
 DUMP: Volume 1 took 0:17:07
 DUMP: Volume 1 transfer rate: 41201 kB/s
 DUMP: 42313570 blocks (41321.85MB) on 1 volume(s)
 DUMP: finished in 1027 seconds, throughput 41201 kBytes/sec
 DUMP: Date of this level 0 dump: Fri Aug 5 13:13:16 2022
 DUMP: Date this dump completed: Fri Aug 5 13:30:23 2022
 DUMP: Average transfer rate: 41201 kB/s
 DUMP: DUMP IS DONE

Only level 0 dumps can be performed on individual directories. An incremental
dump could be done on /dev/nvme0n1p5 but not on /home

From the OpenBSD man page (man -s 8 dump)

For individual files or directories only level 0 dumps are allowed;
 # dump -0 -f OpenBSDFiles_Lvl0.dump /home/files-to-dump

files-to-dump is either a mount point of a filesystem or a list of files and directories on a
single filesystem to be backed up as a subset of the filesystem. In the former case,
either the path to a mounted filesystem, the device of an unmounted filesystem or
the disklabel(8) UID can be used. In the latter case, certain restrictions are placed
on the backup: -u is ignored, the only dump level that is supported is -0, and all
of the files must reside on the same filesystem.

https://man.openbsd.org/OpenBSD-7.1/dump

A ksh script for doing backups with Dump
#!/bin/ksh
Script to backup your computer with dump (man -s 8 dump) on OpenBSD
trap 'print "You must connect the external hard drive"' ERR
Mount the external hardrive
mount -t ffs /dev/sd1i /mnt
Unmount the home partition, /dev/rwd0g,so it is not being written to.
umount /home

Present choices for dump levels
PS3="Enter dump level: "

select Level in 0 1 2 3 4 5 6 7 8 9 Quit
do
case $Level in

[0-9]) dump -${Level}au -f /mnt/OpenBSDHome-lvl${Level}.dump /dev/rwd0g;;
Quit)
umount /mnt
mount /home
exit;;

esac
done

Restoring files with Restore in Interactive mode (-i)
If your backup source was home, #dump -0 -f /mnt/OpenBSD.dump /home, then cd /home/
1. As root run # restore -i -f /mnt/OpenBSDHomeLvl0.dump
2. The root prompt will change from # to restore>
3. At the restore> do ls. This will show someaccount as the directory
4. Do restore> cd someaccount.ls will show the files
5. Now do restore> add file1.txt do the same for file2.txt and file3.txt say.
6. Do restore> ls and all the *.txt files have a leading asterix like so: *file1.txt,*file2.txt,

*file3.txt etc. The asterix shows that the files have been marked for extraction to
/home/someaccount

7. Now do restore> extract.The restore will ask "Specify next volume". In this case there is only
one volume, so enter 1. If there are multiple volumes then you want to begin with the last
one first.

8. Restore will then ask set owner/mode for '.' ? [y/n] and you want to use 'y'.
9. Restore will then extract the files into /home/someaccount
10.Finally do restore> quit.

Backup Strategies
Both Aeleen Frisch and Evi Nemeth have good advice on when and at what levels to do
backups. Here I will quote the OpenBSD man page (man -s 8 dump).
 Always start with a level 0 backup, for example: # /sbin/dump -0u -f /dev/nrst1

/usr/src. This should be done at set intervals, say once a month or once every two
months, and on a set of fresh tapes that is saved forever.

 After the level 0 dump, backups of active file systems are taken on each day in a
cycle of a week. Once a week, a level 1 dump is taken. The other days of the week
a higher level dump is done. The following cycle needs at most three tapes to
restore to a given point in time, but the dumps at the end of the weekly cycle will
require more time and space: 1 2 2 2 2 2 2. This sequence requires at most eight
tapes to restore, but the size of the individual dumps will be smaller: 1 2 3 4 5 6 7.
This sequence seeks a compromise between backup and restore effort: 1 2 2 3 3 4
4. The weekly level 1 dumps should be done on a set of tapes that is used cyclically.
For the daily dumps a tape per day of the week can be used.

 After several months or so, the daily and weekly tapes should get rotated out of the
dump cycle and fresh tapes brought in.

https://man.openbsd.org/OpenBSD-7.1/dump

	Slide 1
	What is Dump and Restore?
	The Benefits of Dump and Restore
	Backing up files with Dump
	Backing up files with Dump
	Backing up files with Dump
	What is the problem when dumping live filesystems?
	What is the problem when dumping live filesystems?
	What is the problem when dumping live filesystems?
	Slide 10
	Slide 11
	A ksh script for doing backups with Dump
	Restoring files with Restore in Interactive mode (-i)
	Backup Strategies

