
Basic Software Cost and
Schedule Estimation: Guessing

at how long and how much.
Bryce L. Meyer

St. Louis UNIX Users Group
14 June 2017

Overview

• Why can’t we predict our software projects?
• Approaches to schedule and cost prediction
• Tricks of the Trade
• Data Availability and Dangerous Data
• A few Common Methods and their limits

Why can’t we predict our software
projects?
• Software is HARD!
• Complexity-Entropy Law (expanded from Thermodynamics):

The more complex or massive a project is, the more chaos
will reign!

• Chaos/Entropy=uncertainty (usually in a bad way) in costs and
schedule!

• You can usually get only 2 of (sometimes 1 of): Good
Performance, Short Schedule, Low Cost.

• By the time you have enough data to confidently predict
how much a project will cost, the project is over!

• Quality, Planning, and Architecture mitigate chaos!
• All these play into not just predicting cost and schedule, but

performance of the software, and happiness of the workers too!
• Most software cost is AFTER beta delivery.

• No software survives first contact with the users!

Ways to Estimate Costs and Schedule for
Software and Software Heavy Systems.

There are a few ways to estimate cost and schedule for
software efforts:
• Comparative: Find something that allows comparison to

other projects, then interpolate or extrapolate
• Parametric: Collect data to feed a series of equations with

coefficients from other past projects (a historical data set).

https://opensource.com/business/14/1/top-project-management-tools-2014

Traditional Estimation (Decomposition +
Comparative):

1.Break down the project into small enough
parts that someone can guess based
experience
•Hopefully their experience is relevant?
• Usually a hierarchy of parts, i.e. parts of parts.

2.Add up the guesses (using MS Project, Open
Project, other tool) and add ‘project
manager discretion’ (i.e. a multiplier of
2.4+/-).

https://opensource.com/business/14/1/top-project-management-tools-2014

Basic Types of Software Cost Models
Software targeted cost models fall into combinations
of 4 basic modes, as in the matrix below:

Approach

Estimation
Method

Decomposition: Break
down Software/System
into design or project
parts small enough to
estimate costs

Systematic:
Estimate at a high
level by system or
project.

Comparative (Analogy):
Estimate by interpolation
or extrapolation from
historically similar efforts

Comparative estimation of
each element in a
Decomposition
(Traditional Method)

Comparative estimation at
the System/Project level
(also Traditional…the
W.A.G.)

Parametric: Estimate with
a mathematical model that
incorporates factors from
the effort

Parametric estimation of
each element in a
Decomposition

Parametric estimation at
the System/Project level

I put expert
guesses as

Comparative
.

Conundrum of Software Estimation

• You have the most and best data when you are done!

Da
ta

 a
va

ila
bl

e
x

co
nf

id
en

ce
 in

 th
e

da
ta

Project Timeline
Start End

Know it
all well

Know
nothing

NOTIONAL

Software Cost Models: Required Data
• For each type below, different data is required to complete the estimation.

What you can get may determine what models you use.
Approach

Estimation
Method

Decomposition: Break
down Software/System
into design or project
parts small enough to
estimate costs

Systematic:
Estimate at a high
level by system or
project.

Comparative(Analogy):
Estimate by interpolation
or extrapolation from
historically similar efforts

1) Complete breakdown at a
low enough level for
comparison
2) Comprehensive set of
costs of comparative
elements and data for
correct comparison

Comprehensive set of costs
of comparative
systems/projects and data
for correct comparison.
Must be in the same
variables as used to
compare

Parametric: Estimate with
a mathematical model that
incorporates factors from
the effort

1) Complete breakdown at a
low enough level for
comparison
2) Factors to feed the
parametric model for each
element.

Factors to feed the
parametric model for the
system/project

Data Collection is HARD!
(Good) Data for use in cost estimation is hard to get:
• People in legacy programs impacted by new efforts

due to integration or replacement:
• Are not usually the ones who developed the

system, nor were around when specified
• Fear for their jobs therefore resent external parties

asking about software they own. (Don’t hurt my
baby!)

• Fear criticism for technical decisions made about
the software. (Don’t call my baby ugly!)

• Even if the program is long gone or unaffected by the
estimate, they will still react as in impacted programs!

Data Collection is HARD! (Again)
More reasons why data for cost estimation and cost
models is hard to get:
• May be proprietary to the company who made the

software, or under Intellectual Property concerns.
• May be under security concerns
• Is often not shared in corporate knowledge bases (due

to territoriality or mistrust or obscurity)
• Is rarely available on the general internet in detail

enough for good estimation.

More Real World Estimation Experiences
• BS in = BS out.

• If variables or comparison data is bad, the cost estimate will
also be bad. Coarse guesses = low confidence results.

• Trick: Reduce opinion range by expanding questions. That
way a single error is mitigated in the model.

• Managers and Engineers are OPTIMISTIC when estimating effort
and cost!

• In the Real World, most coding shops produce less than 300
equivalent lines of code (final) per person per MONTH!

• Estimators must soothe each data holding group to gain their
trust, and be willing to at least feel their concerns

• Estimators need a back-up data source to generate a ceiling and a
floor for estimates in the event data is impossible to get in time,
or is flippant.

• Use multiple models to compare results.

More Real World Estimation Experiences

• If you are estimating some else’s project: estimators need
to understand the software technologies in the system.

• MBA does not mean I get software!
• If you are estimating some else’s project: Commandment:

THOU SHALT NOT WASTE THE TIME OF DATA HOLDERS!
• Be empathetic!
• Go in with a solid story, explanation of method to the equation

level, and series of bullets for common questions
• Know the ranges of effects for each answer and the sensitivity

of variables.
• Have a strong, well developed strategy with options to get to a

solid set and range of costs.
• NOTE: Integration always gets short-changed! Integrating

chunks of a complex project takes lots of testing and fix
time.

How Do I Break Out A Software Project?

•An effort can be broken down two ways:
•By Time phase
•By Component

• Example: by service, by object, by function, etc.
•The Work Breakdown Structure (WBS) can be

either or both.
•Core functions may be working long before test
and fix is complete for software projects esp. due
to:

• Security + Resiliency
• User Interface alterations
• Interfaces to other systems
• Non-core functions

•Project Tools

Comparing Historical Data To Get At
Costs/Schedule
• To compare a project you have, against historical data, you

need a common set of comparison variables.
• Common comparison items:

• Organizational:
• Team Experience
• Team Cohesion
• Management Effectiveness
• Quality Process
• Requirements knowledge
• Ability to convert requirements to design
• User Involvement
• Size of User Base and Threats

• Technical:
• Expected software lines of code or functional elements
• Complexity of objects/functions/services
• Testability of Requirements
• Limits on Bandwidth/Performance/Storage
• Criticality, Required Availability (ex: Real Time, Safety Critical, Cybersecurity)

Sizing in Software
• Sizing (Size, functional size measure) is useful for comparing data
• Sizing is a way to determine the magnitude of a software project effort and

time
• It is NOT just Lines of Code, but may use Source Lines of Code (SLOC) with

multipliers based on models and experience to match projects.
• Function Points may be used as a size metric also

• Function Points are measurable characteristics of a software project, that
indicate size.

• Many Standards can be used to calculate function points:
• COSMIC: ISO/IEC 19761:2011 (most commonly used)
• FiSMA: ISO/IEC 29881:2010
• IFPUG: ISO/IEC 20926:2009
• Mark-II: ISO/IEC 20968:2002
• NESMA: ISO/IEC 24570:2005

• Best to have both tools and expertise when determining function points
• In all cases, an understanding of the software effort, and a series of rules for

deriving characteristics, are required.

http://cosmic-sizing.org/cosmic-fsm/

http://cosmic-sizing.org/cosmic-fsm/

Function Points the Easy Way
• Get all these:

• Interfaces out of, and into, the software.
• Multiple each by a complexity (1 = normal, 3=complex)

• Core Functions or Services (aka Algorithms)
• Again use a multiplier for each before adding

• High Level User Scenarios/Use Cases
• Again use a multiplier for each before adding

• High Level Requirements
• Again use a multiplier for each before adding

• Add them up to get Function Points!
• Ex: RICEF(W)S are how SAP does Function Points….

https://blogs.sap.com/2014/05/20/ricefws-in-sap-projects-and-role-of-functional-consultant/

Lines of Code? SLOC? ESLOC?
• In order to get an Apples to Apples comparison of Lines of Code, a reference

language is picked, and a set of rules are applied.
• Rules for: Comment Lines, Declaration Lines, etc.
• What about configuration items and data sets (ex: css, xml DTD, XML in general,

etc.)
• Even in the same language, all lines are not equal!
• Count of Lines of Code (CLOC) is the raw count of every line in your code.
• Source Lines of Code (SLOC) is the count of code in the language you used using

some rules.
• Equivalent Source Lines of Code (ESLOC) is SLOC adjusted against a ruleset and

common equivalent language.
• Given a big count, the worth of each line averages out, as long as the language is ruled in.

• Most Models assume you made a series of choices, or guesses:
• In modifying existing code, you can run a tool to get a count. Most modern

software management tools will calculate a SLOC, maybe an ESLOC.
• Fortunately, there are tools that help:

• Unified Code Counter: http://csse.usc.edu/ucc_new/wordpress/
• CLOC: http://cloc.sourceforge.net/

Old resource: https://resources.sei.cmu.edu/asset_files/SpecialReport/1995_003_001_16358.pdf

http://cloc.sourceforge.net/#Overview
https://en.wikipedia.org/wiki/Source_lines_of_code
http://csse.usc.edu/afcaa/manual_draft/3.%20Collecting%20Metrics.pdf
http://csse.usc.edu/ucc_new/wordpress/
http://cloc.sourceforge.net/

Statistics, Interpolation, and Extrapolation

• Most (all) models use a historical database that has been standardized to a
series of variables (the N dimensional space previously mentioned).

• Nearest Neighbor, Liner Interpolation, Polynomial Interpolation, and
Multivariate interpolation is used in many models to estimate values from
historical data.

• Coefficients from the historical data can then be analyzed using ANOVA or
other statistical methods to arrive at coefficients for (parametric) models or
extrapolation.

• Monte Carlo methods are often used to explore variables for early phase
programs with sparse data to make estimates using the historical statistics
and get a confidence interval.

• Monte Carlo can also be used to find most probable scheduling curve.
• Armed with coefficients and confidence, planners can explore cost and

schedule options.

https://en.wikipedia.org/wiki/Multivariate_interpolation

Interpolation and Extrapolation
(for Sizing)

• Can be used to generate sizing for early stage projects to feed
other models

a

b

c

d

X

Interfaces

Su
cc

es
sf

ul

Pr
oj

ec
ts

fo

r t
ea

m

(S
Ps

)

Note: Far more dimensions and comparatives required to be anywhere near
accurate.
Can use linear or other extrapolation models to get Y

project Requirements Interfaces SPs ESLOC FPs

a 2067 203 19 1023 12

b 3102 410 21 1493 20

c 3420 530 9 3230 48

d 1920 190 8 2301 30

X 2000 300 16
?

Between 1023-3230

?
Between

12-48

Y 4000 550 2
?

>3230
?

>48

Y

These have to be standardized
using weights because not all
requirements or interfaces are of
the same risk/complexity

Not all dimensions
are of equal
importance…

Interpolation and Extrapolation
(for cost/duration)

• The characteristics form an N dimensional space
• Databases that contain comparison data are often proprietary

a

b

c

d

X

FP

Su
cc

es
sf

ul

Pr
oj

ec
ts

fo

r t
ea

m

(S
Ps

)

Note: Far more dimensions and comparatives required to be anywhere near
accurate.

project KESLOC FP SPs ppm cost
Duration
(months)

a 2067 203 19 1023 12

b 3102 410 21 1493 20

c 3420 530 9 3230 48

d 1920 190 8 2301 30

X 2000 300 16

?
Between 1023-

3230

?
Between

12-48

Y 4000 550 2
?

>3230
?

>48

Y

Parametric Models vs Comparative Models

• Parametric models are useful:
• When Data is Limited for a new project, so not available for comparison
• When modifying or integrating existing projects, i.e. projects in progress

• Most Comparison is for either phases, or whole projects.
• When a WBS is not available in detail
• When the estimate has to be done quick (no time to fill in a decomposition)

• Parametric Models are only as good as the data used in development
• The Historical Database is used to tune the model, the better and closer it is

to your project, the more accurate

• Parametric Models: Good for tracking current State against previous
estimates.

• Are we still tracking?

SUPER SIMPLE (and Risky) Parametric
Method

• Cost = Adjusted Size * (Some Coefficient from a table or your org’s
history)

• Schedule = Adjusted Size * (Some Coefficient from a table or your
org’s history)

• You could use exponents and additive methods to make it more
complex.

COCOMO and COSYSMO Parametric Model Family
• Dr. Barry Boehm started work on Constructive Cost Model (COCOMO) in the 1970s,

with COCOMO out in 1981. Work lead to formation of the Center for Systems and
Software Engineering @ University of So. Cal.

• All in the family are multiplicative models, i.e. coefficients from a knowledge matrix
are multiplied by inputs, then a product (Π) is used to combine them with a ‘size’
estimate.

• Exponents are also used.
• COCOMO lead to COCOMO II (~1995)
• COSYSMO (Constructive Systems Model)(for software systems, 2005 (v1), 2009(v2))

• Jared Fortune and Ricardo Valerdi enhanced COSYSMO to get COSYSMO v2.0 w/aid of Dr.
Boehm

• COCOTS is a newer model that wraps in COTS integration
• http://csse.usc.edu/csse/research/COCOTS/index.html

• Free to use for Gov’t/Academia

http://sunset.usc.edu/csse/research/cocomoii/cocomo_main.html

http://csse.usc.edu/csse/index.html

http://csse.usc.edu/csse/research/COCOTS/index.html

COSYSMO v. COCOMO

•COCOMO Family requires either
Function Points or Source Lines of Code
(SLOC), therefore requires a more
mature design

•COSYSMO requires only architecture
parameters, so works for very early
development exploration.

•Can be used in concert

COCOMO II
• Can use Source Lines of

Code (SLOC) or Function
Points.

• SLOC can be Equivalent
lines against a reference
language

• 13 Quantitative Inputs
(not counting
$$/person/month) in
SLOC mode

• SLOC is primary driver,
rest multipliers in SLOC
Mode

• 22 Qualitative Inputs: 5 for
size scale, 17 for cost
drivers

http://csse.usc.edu/tools/COCOMOII.php

http://csse.usc.edu/tools/COCOMOII.php

COCOMO II
• Function Points depend

on equivalent language
(i.e. function points
leveled to common source
language
equivalent…many options)

• 1 Quantitative Input (not
counting
$$/person/month)

• 22 Qualitative Inputs: 5 for
size scale, 17 for cost
drivers (not counting
language)

http://csse.usc.edu/tools/COCOMOII.php

COCOMO II EXAMPLE

COSYSMO

http://csse.usc.edu/tools/ExpertCOSYSMO.php http://cosysmo.mit.edu/downloads/

http://csse.usc.edu/tools/ExpertCOSYSMO.php
http://cosysmo.mit.edu/downloads/

SEER-SEM (SEER for software) (COMMERCIAL)

• Developed by Dan Galorath in 1988. Commercial Product of Galorath inc.
• Emerged from efforts in the cost community in the 1970s’-1980’s (cross flow

between this effort and similar work at TRW/USC, etc.)
• Incorporates decomposition then estimation by a family of models, but are linked

(as in other parametric models) to software size.
• Has a long series of questions hierarchal questions to probe various risk areas.
• Can estimate with initial answers, then probe deeper, but requires extensive data

to be effective.
• Links to other software packages (MS Office + Project, Oracle, etc.)

https://en.wikipedia.org/wiki/SEER-SEM http://galorath.com/products/software/SEER-Software-Cost-Estimation
http://galorath.com/products/software/extended-capabilities-seer-sem

PRICE TruePlanning (COMMERCIAL)

• Programmed Review of Information for Costing and Evaluation (PRICE).
• Commercial Tool Set, one of the first parametric models

• From RCA, then Lockheed-Martin, David Shore, Frank Freiman and William Rapp
1970s. Spun out as PRICE.

• System Engineering and Software Cost Estimation Toolbox
• WBS System Engineering approach meshed with various proprietary parametric

and interpolation methods using sizing and complexity values at levels for
available data. System is broken down, and questions are asked for each item.

• Uses a knowledge base and assumptions based on provided data.
• Sensitivity: Like other WBS models, requires a fairly detailed design and refined

requirements, and a heavier data requirement. Less data, more inaccurate (due to
inaccurate complexity and size).

• THE LESS A PROJECT MATCHES THE HISTORICAL DATA, THE LESS ACCURATE THE ESTIMATE.

http://www.pricesystems.com/trueplanning-framework
For a system:
https://www.nasa.gov/sites/default/files/files/44_JPL
_Calibration_Process_08102015_final_CAD.pdf

https://en.wikipedia.org/wiki/Software_development_effort_
estimation#Development_estimation_software

https://en.wikipedia.org/wiki/PRICE_Systems

CONCLUSION

• Three Things We Need to Estimate Well:
• Cost
• Schedule
• Performance

• Accuracy of Estimate = Accuracy and Availability of
Data

• From Software Project
• From Organization
• From History
• How close does it match?

• Cost Estimation is great for determining how well your
team is doing software quality!

A Few References

• Jackson,. Meyer, Wessel, “Methodology for the Cost Benefit Analysis
of a Large Scale Multi-phasic Software Enterprise Migration”,
Software Solutions Symposium 2017,
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=495776

• COSYSMO at http://cosysmo.mit.edu/
• COCOMO II at http://csse.usc.edu/csse/tools/

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=495776
http://cosysmo.mit.edu/
http://csse.usc.edu/csse/tools/

More Links/References
• https://en.wikipedia.org/wiki/Cost_estimation_in_software_engineering

• Quantifying Uncertainty for Early Lifecycle Cost Estimation (QUELCE), CMU/SEI-2011-TR-026

• http://csse.usc.edu/TECHRPTS/2008/usc-csse-2008-836/usc-csse-2008-836.pdf

• https://en.wikipedia.org/wiki/Software_development_effort_estimation

• http://www.psmsc.com/UG2010/Presentations/p11-Packard-
Improving%20ERP%20Estimation%20in%20the%20DOD%20(FINAL).pdf

• COTS Integration Estimation: Enterprise Resource Planning Systems, Dr. Wilson Rosa, James Bilbro , USC CSSE
Annual Research Review 2012, March 6, 2012,
http://csse.usc.edu/csse/event/2012/ARR/presentations/COTS%20Integration%20Estimation-ERP.pdf

• Jones, Capers. Applied Software Measurement: Global Analysis of Productivity and Quality. McGraw-Hill Osborne
Media, April, 2008.

• The Failure of Risk Management: Why It’s Broken and How to Fix It, ISBN: 978-0470387955, 2009, Douglas
Hubbard

• How to Measure Anything: Finding the Value of Intangibles in Business, 2008, Douglas Hubbard

• SEER SEM:
• https://en.wikipedia.org/wiki/SEER-SEM
• http://galorath.com/products/software/extended-capabilities-seer-sem
• http://galorath.com/products/software/SEER-Software-Cost-Estimation

https://en.wikipedia.org/wiki/Cost_estimation_in_software_engineering
http://csse.usc.edu/TECHRPTS/2008/usc-csse-2008-836/usc-csse-2008-836.pdf
https://en.wikipedia.org/wiki/Software_development_effort_estimation
http://www.psmsc.com/UG2010/Presentations/p11-Packard-Improving%20ERP%20Estimation%20in%20the%20DOD%20(FINAL).pdf
http://csse.usc.edu/csse/event/2012/ARR/presentations/COTS%20Integration%20Estimation-ERP.pdf
http://galorath.com/products/software/extended-capabilities-seer-sem
http://galorath.com/products/software/SEER-Software-Cost-Estimation

More links
• http://sunset.usc.edu/csse/research/cocomoii/cocomo_main.html
• http://csse.usc.edu/tools/COCOMOII.php
• http://cosysmo.mit.edu/downloads
• http://csse.usc.edu/tools/ExpertCOSYSMO.php
• http://csse.usc.edu/csse/research/COCOTS/modeldesc.html
• http://galorath.com/products/software/extended-capabilities-seer-sem
• https://en.wikipedia.org/wiki/SEER-SEM
• http://galorath.com/products/software/SEER-Software-Cost-Estimation
• http://www.spminfoblog.com/post/141/slim---a-mathematical-model/

COCOMO II Model Mechanics

Software Scale Drivers (feed SF)
Precedentedness

Development Flexibility
Architecture / Risk Resolution

Team Cohesion

Process Maturity

Software Cost Drivers (Feed EM)
Required Software Reliability

Data Base Size
Product Complexity

Developed for Reusability
Documentation Match to Lifecycle Needs

Analyst Capability
Programmer Capability
Personnel Continuity

Application Experience
Platform Experience

Language and Toolset Experience
Time Constraint

Storage Constraint
Platform Volatility

Use of Software Tools
Multisite Development

Required Development Schedule

A function converts SLOC and FP inputs
to ESLOC for Size
(See Equivalent Size in outputs)

B is a
constant
built into the
model

a is a constant built
into the model

Software Cost
Drivers and
Software Scale
Drivers are
multiplied using
a knowledge
matrix from
hundreds of
software efforts

PM is Person Months
(i.e. Effort)

http://sunset.usc.edu/csse/research/cocomoii/cocomo_main.
html

COSYSMO Engine Mapping

Equations from:
ESTIMATING SYSTEMS ENGINEERING REUSE WITH THE CONSTRUCTIVE SYSTEMS ENGINEERING COST MODEL (COSYSMO 2.0) by Jared Fortune, USC, 2009
And
COSYSMO 2.0: A Cost Model and Framework for Systems Engineering Reuse (Jared Fortune and Ricardo Valerdi), 2009 COCOMO Forum, Massachusetts Institute of Technology
And
Valerdi, R. (2005). The Constructive Systems Engineering Cost Model. Ph.D.
Dissertation. University of Southern California. Los Angeles, CA.

Numeric Inputs Easy Nominal Difficult
of System Requirements ## ##
of System Interfaces ## ##
of Algorithms ## ##
of Operational Scenarios ## ##

Qualitative Inputs Scale (*=risky side)
Requirements Understanding *Very Low To Very High
Architecture Understanding *Very Low To Very High

Level of Service Requirements Very Low To Very High*
Migration Complexity *Extra High To Nominal
Technology Risk *Extra High To Very Low
Documentation Very Low To Very High*
and Diversity of
Installations/Platforms *Extra High To Nominal
of Recursive Levels in the
Design Very Low To Very High*
Stakeholder Team Cohesion *Very Low To Very High
Personnel/Team Capability *Very Low To Very High
Personnel
Experience/Continuity *Very Low To Very High
Process Capability *Very Low To Extra High
Multisite Coordination *Very Low To Extra High
Tool Support *Very Low To Very High

A, w are
embedded in
model (w is a
matrix from
initially 44
projects)

r is the breakout of
Numeric inputs
into the 6 reuse
categories, if Reuse
is used.

PM is Person Months
(i.e. Effort)

E is embedded in
model (from
initially 44
projects)
~1.06

	Basic Software Cost and Schedule Estimation: Guessing at how long and how much.
	Overview
	Why can’t we predict our software projects?
	Ways to Estimate Costs and Schedule for Software and Software Heavy Systems.
	Traditional Estimation (Decomposition + Comparative): �
	Basic Types of Software Cost Models
	Conundrum of Software Estimation
	Software Cost Models: Required Data
	Data Collection is HARD!
	Data Collection is HARD! (Again)
	More Real World Estimation Experiences
	More Real World Estimation Experiences
	How Do I Break Out A Software Project?
	Comparing Historical Data To Get At Costs/Schedule
	Sizing in Software
	Function Points the Easy Way
	Lines of Code? SLOC? ESLOC?
	Statistics, Interpolation, and Extrapolation
	Interpolation and Extrapolation�(for Sizing)
	Interpolation and Extrapolation�(for cost/duration)
	Parametric Models vs Comparative Models
	SUPER SIMPLE (and Risky) Parametric Method
	COCOMO and COSYSMO Parametric Model Family
	COSYSMO v. COCOMO
	COCOMO II
	COCOMO II
	COCOMO II EXAMPLE
	COSYSMO
	SEER-SEM (SEER for software) (COMMERCIAL)
	PRICE TruePlanning (COMMERCIAL)
	CONCLUSION
	A Few References
	More Links/References
	More links
	COCOMO II Model Mechanics
	COSYSMO Engine Mapping

