
SLUUG Talk: Large Language Models
This repository contains the slides and code for the talk:

Demystifying Large Language Models (LLMs) on Linux: From Theory to
Application

It was given for the St. Louis Unix Users Group (SLUUG) on 2024/2/22 @ 6:30 PM
CST.

SLUUG: https://www.stllinux.org/

Meetup: https://www.meetup.com/saint-louis-unix-users-
group/events/290697932/

https://www.stllinux.org/
https://www.meetup.com/saint-louis-unix-users-group/events/290697932/
https://www.meetup.com/saint-louis-unix-users-group/events/290697932/

Alex Towell

lex@metafunctor.com

https://metafunctor.com

https://github.com/queelius

https://twitter.com/queelius

Important URLs for this talk:

Talk link: https://github.com/queelius/sluug-talk-llm
Colab notebook on n-gram model:
https://colab.research.google.com/drive/1ak4kOtbIQGXE5kuhhGTd55xu4
qRpeZd7?usp=sharing
ElasticSearch NLQ demo (down): http://lab.metafunctor.com:6789 (API:
http://lab.metafunctor.com:6789/docs)

mailto:lex@metafunctor.com
https://metafunctor.com/
https://github.com/queelius
https://twitter.com/queelius
https://github.com/queelius/sluug-talk-llm
https://colab.research.google.com/drive/1ak4kOtbIQGXE5kuhhGTd55xu4qRpeZd7?usp=sharing
https://colab.research.google.com/drive/1ak4kOtbIQGXE5kuhhGTd55xu4qRpeZd7?usp=sharing
http://lab.metafunctor.com:6789/
http://lab.metafunctor.com:6789/docs

Outline of Talk

Theoretical Background

Go over a simple language model

-gram model (Jupyter Notebook)
Easy to understand and helps us understand some aspects of LLMs.

Show an application of LLMs:

Try to make a database search API intelligent (NLP)
with small LLMs.

Open Discussion

Good-Old-Fashioned AI (GOFAI)

Find a way to symbolically represent the problem and
then use logic or rules to solve it.

Programming

Rule-based systems

First-order logic

LLMs are good at using these tools.

Integrate Prolog with LLM tool-use to help with planning and reasoning?

Reductive Reasoning

GOFAI works for a lot of problems
we care about:

Filter everything through our
small working memory.

Inductive bias: Makes
assumptions about the
world.
Help us generalize out-of-
distribution.

Take big problems and break
down into simpler problems.
Solve simpler problems and
combine.

Limits of GOFAI
Many problems are hard to break down into simpler parts.

Whole greater than the sum of its parts.

Too complex to solve reductively.

We can't program computers to do it.
Identifying cats in pictures?

The hard problems are easy and the easy problems are hard.
-- Steven Pinker

Playing with legos is hard but multivariate calculus is easy (for a
computer).

How Do Our Brains
Work?
Brains programmed by evolution
to survive in a complex world.

It's a prediction engine: it
learns to predict the world.
The unconscious mind is not
limited by a small "working
memory"
It can do things we don't
understand how to do.
Brain is a black box. (See:
Interpretable ML)

Machine Learning
 Let's have the computer learn from data.

Since the real world is too complex, let's have the computer learn from data
like we do.

There are three main types of learning.

Supervised Learning (SL)
Unsupervised Learning
Reinforcement Learning (RL)

Spoiler: LLMs use self-supervised learning (SSL) and RL (RLHF).

Type of Learning (1): Supervised Learning

Learning from labeled data. We have some input and output data, and we want
to learn how to map the input to the output.

Given an (unknown) function and a set of input-output pairs , learn
a function that approximates on the input-output pairs.

E.g., classification: : [or] ↦ { , }.

Use to predict or for new images.

Easiest problem to solve in ML. But: limited by data.

Fine-Tuning LLMs is supervised learning: improve it on specific labeled tasks.

Type of Learning (2): Unsupervised Learning

No labeled data. Learn the underlying structure of the data.

Clustering: Grouping similar data points. (See: RAG)

Dimensionality Reduction: Learn efficient representations of the data.

Very hard and one of the most important problems in ML.

Density Estimation: Stochastic estimate of process that generated the
observed data. Say the process generates pairs and we estimate its
density .

Classification (supervised):

Pre-training LLMs is like unsupervised learning. Learn a good representation
and probability distribution of the raw text using self-supervised learning
(SSL).

Final Type of Learning (3): Reinforcement Learning

This is an agentic approach to learning. Agent interacts with environment and
learns from the rewards it receives.

Goal: maximize the expected sum of rewards.
Spoiler: Agentic frameworks that include LLMs as a prediction component is a
very active area of research.
Prediction + Search = Planning

Counterfactual reasoning
Hypothesis: Compression = Prediction = Intelligence

Big reason a lot of people are excited about Sora.
Has everyone seen the Sora videos?
"Intuitive" world simulation (embedded in the weights of a giant NN).

Early Failures in ML
Early efforts in ML were not very successful. Reality is complicated:

 extremely large and each some complex object.

Overfitting, curse of dimensionality, lack of data/compute.

To combat lack of data/compute, clever solutions developed.

Many of these methods are no longer around.

"The biggest lesson that can be read from 70 years of AI research is that
general methods that leverage computation are ultimately the most
effective, and by a large margin."
-- Richard Sutton's Bitter Lesson

Neural Networks
Neural Networks (NN) are one the
solutions that stuck around.

It fell out of favor for a while,
but it's back.
Universal function
approximator.

Can learn to represent any
function.
But: need a lot of data to
do so and be difficult to
train.

NNs seem to scale to as much
data and compute as we can
throw at them.

Inductive Bias
Observations may have an infinite set of hypothesis that are compatible with the
data.

Inductive Bias: The set of assumptions that the model makes about the data.

Occam's Razor: choose the simplest hypothesis that is compatible with the
data. (See Solomonoff Induction.)

Generalizing out-of-distribution (OOD) from inputs not in the training data.

Problem: We are almost always out-of-distribution.

Except in toy problems (see: early successes)

Good inductive biases are necessary for generalization.

No Free Lunch Theorem: No model is optimal for all tasks.

Era of Deep Learning
One of the hardest parts is
learning sample efficient
representation of the data.

Layers of NN learn
progressively higher-level
representations: Pixels ->
Edges -> Objects

AlexNet (2012) was the first to
show that deep learning could
work well on large-scale
datasets.

Era of Deep Learning
(cont.)
DNNs (feed-forward) learn little
circuit programs that can generate
parts of the training data. (Image
stolen from Jeff Dean's slides.)

Hundreds of layers: can learn
pretty complicated programs.

(What a human can do in a half
a second, a DNN can do?)

Era of Generative AI
Generative AI "reverses" the arrows
- Image to text, image to image,
etc.

They learn something about
the data generating process
(DGP).
They have completely changed
our expectations of what
computers can do.

Era of Generative AI (cont.)
We now have computers that can see, hear, understand, and generate all of these
things.

Let's go look at Sora: generative video, or world(s) simulator?

Scaling: And increasing the scale (data, compute) increase their capabilities.
See: Scaling laws.

Need a lot more compute.
It's going to get wild(er).
Hypothesis: Prediction = Compression = Intelligence .

Large Language Models (LLMs)
Autoregressive (AR) models learn a probability distribution over training data by
using self-supervised learning (SSL):

This is hard to learn, but with enough data and compute, a lot seems possible.
LLMs have a nice advantage since language is designed to have a very low
dimensionality and have a high signal to noise ratio.

Representation learning is easier in language than in other domains.
Still learns representations (word2vec)

Language represents much of the things that humans care and think about,
so learning to predict it is a kind of general intelligence. (See: Sparks of AGI by
Microsoft)

Sampling from LLMs
There are many different ways to sample from LLMs and change the behavior of
the model.

Temperature: Rescaling the logits before applying the softmax function.
: estimates the probability distribution.
: reduces randomness, i.e., more predictable outputs.
: increases randomness, i.e., more unpredictable outputs.

Good for controlling exploitation vs exploration if repeatedly sampling from the
model to generate new or different outputs.

Top-k and Top-p Sampling: Choose the top- or top- tokens and sample
from them.

Beam Search: Explore multiple paths and sample based on that joint
probability.

Prompting Strategies

Early models were very sensitive to the prompt.

Makes sense, they were trained to generate the data.
If you condition on crazy data, you get crazy outputs.

Various prompting strategies have been developed to help the model generate
more reliable outputs:

Chain-of-thought (CoT)
Tree-of-thought (ToT)
and so on...

LLM Overview
Basic idea: train a model to predict the next token in a sequence of tokens.

Task: Given a sequence of tokens, predict the next token.

Pre-Train model to learn raw data distribution using SSL.
Fine-tune model to a specific dataset that is more relevant to a task.
RLHF model to bias it to produce outputs that people prefer.

Goal: Enable the generation of new data points for a given task.

OOD Generalization

At inference, outputs are almost always out-of-distribution (OOD).

In-Context Learning: Transformers seem to be pretty good at generalizing from
data that was not seen during training.

Learning to predict the next token when the data is sufficiently complicated
may require a general kind of intelligence.

Causal inductive bias: The model is biased to predict the next token based on
the evidence of the previous tokens.

Example: "Based on all the previous evidence, I conclude that the murderer is ___".
To do this well, it seems you must be able to reason about the evidence.

Naive N-Gram Model (AR)
Over Bytes

We consider an AR-LM over bytes
(256 tokens):

Algorithmic training data:
Partial expression trees.

Sparse markov chain of
order states.

Analyze how well model
predicts the next token given
the context.
How well does model capture
the underlying process?

Spoiler: It doesn't do well.

Implementation Notes

We represent our -gram model as a dictionary of dictionaries:

Outer dictionary is indexed by context.
Inner dictionary is indexed by next token.
Each token | context maps frequency in training data.

This is simple model and simple data

Hopefully, exploring its properties can help us understand LLMs.

Colab

Let's go to the notebook.

If you want to follow along, Colab is available at:
https://colab.research.google.com/drive/1ak4kOtbIQGXE5kuhhGTd55xu4qRp
eZd7?usp=sharing
See my GitHub: https://github.com/queelius/sluug-talk-llm

https://colab.research.google.com/drive/1ak4kOtbIQGXE5kuhhGTd55xu4qRpeZd7?usp=sharing
https://colab.research.google.com/drive/1ak4kOtbIQGXE5kuhhGTd55xu4qRpeZd7?usp=sharing
https://github.com/queelius/sluug-talk-llm

Colab Comments

Inductive Bias: Throwing away oldest bytes is a strong inductive bias:

Not necessarily true that the next byte is less dependent on the oldest bytes.

Generative Model: generate text by starting with a any context and then sampling
from the probability distribution for that context to get the next token.

Repeat until we have generated the desired number of tokens.
Same way LLMs work (but they work well).

Colab: Advantages of Our Model

Our model has some advantages compared to AR-LLMs. Since we simply store the
data:

Easy to implement.
Easy to make it a lifelong learner. Store more data.

Colab: Disadvantages of Our Model

But, compared to more sophisticated models, they have huge disadvantages:

-gram model is not able to capture long-range dependencies in the data.

Number of states grows exponentially with the order of the model.
It cannot scale to large contexts, and therefore cannot understand
nuances in the data.

-gram model does not generalize out-of-distribution very well.

Since language is a high-dimensional space, most contexts have never
been seen before.

Colab: Conclusion

Key concept in ML: A good model compresses the data.

There is a notion that compression is a proxy for understanding.

Take a physics simulation: we don't need to store the position and velocity of
every particle.

We can just store the starting conditions and then let the laws of physics
play out.
Not perfect, but perfect prediction impossible.

Only need to predict it well enough to make informed decisions.

Prediction = compression = intelligence

The brain may be a good example of this.

Finite State Machines

We can view AR-LMs as finite state machines (if deterministic) otherwise Markov
chains without loss of generality.

Computers are FSMs, just very large ones.
LLMs are also very large FSMs.

https://www.lesswrong.com/posts/7qSHKYRnqyrumEfbt

Thus, AR-LLMs are differentiable computers that can learn from examples.

https://www.lesswrong.com/posts/7qSHKYRnqyrumEfbt

Tool-Use
There is a lot of training data about how to use tools and APIs.

Large LLMs like GPT-4 do a good job predicting when and how they should
use tools.

Let's go over to the ElasticSearch NLQ demo.

ElasticSearch Demo

Making all endpoints on the internet and UIs intelligent with small and fast
LLMs.

As a trial, we are using ElasticSearch as a backend to enable natural language
queries (NLQs) on ElasticSearch indexes (databases).

Key take-aways: GPT-4 / GPT-3.5 are good, small LLMs not quite there yet.

We have some ways to possibly improve them though. More on that later.

And, of course, today's large models are tomorrow's small models.

Desperately need more compute!

ElasticSearch: What Is It?

An open source, scalable search engine.
Supports complex queries, aggregations, and full-text search.
Can be difficult to use.
Suppose we have articles index with author and title fields and want to
count the number of articles by author:

{
 "size": 0,
 "aggs": {
 "articles_by_author": {
 "terms": { "field": "author" }
 }
 }
}

FastAPI: What Is It and How Do We Use It?

A fast web framework for building APIs with Python.
We are trying two things:

Using ElasticSearch backend for storage and search.
Using LLMs to convert natural language queries (NLQ) to ElasticSearch
queries.

We expose a single endpoint /{index}/nlq that takes an
index and an NLQ and returns a result from ElasticSearch.

Hopefully the result is useful!
Later, remind me to open my firewall to allow access.

Structure of Indexes

I populated ElasticSearch with a two example indexes:

articles : A simple index with author , title , and 'publication_date' fields.

gutenberg : A more complex index with author , publication_date , title ,
and content fields.

Code

Let's look at some code. We'll switch to the code editor. There are
a few files we need to look at:

main.py : The FastAPI app. We can probe it using the Swagger UI at
http://lab.metafunctor.com:6789/docs .

There is a crude frontend at http://lab.metafunctor.com:6789/ .
I made the frontend by chatting with ChatGPT-4. By chatting, I mean
asked two ill-formed questions and copied its code blocks.
See this link: https://chat.openai.com/share/9c95ba2e-94e7-4d9f-ae89-
095357fc39bd

nlq.py : The module that handles the NLQ to ElasticSearch query conversion.

examples.py : A crude example database. We'll talk about this in a bit.

https://chat.openai.com/share/9c95ba2e-94e7-4d9f-ae89-095357fc39bd
https://chat.openai.com/share/9c95ba2e-94e7-4d9f-ae89-095357fc39bd

Issues

GPT-4 is good at converting NLQs to ElasticSearch queries, but it's slow and
expensive to use at scale.

We only need to use an LLM for a relatively narrow task.
Maybe we don't need the full power of GPT-4?

Small LLMs, like llama2 , did poorly on converting NLQs to ElasticSearch
queries.

Idea #1: Use GPT-4 to "Teach" Smaller Models

Use GPT-4 to generate high-quality examples for smaller LLMs.

Feed examples into the context of the small LLM to do In-Context Learning
(ICL).

ICL: a model can generalize to new NLQs

How? Every now and then, use GPT-4 to do the task and store its NLQ to
ElasticSearch query in example database.

Let's look at the examples.py code.

DB is just a Python {} that doesn't persist.

Didn't have the time to use a proper database.
Ironic considering this is all about how to use ElasticSearch!

Issues

The smaller models, like llama2:13b , do not seem to generalize
from the examples very well.

They often do better without "polluting" their context
with too much information.
More tweaking? Or are these small models simply not up to the task.

Idea #2: RAG (Retrieval-Augmented Generation)

Maybe the smaller models need to be fed with more relevant examples. Use RAG
to find relevant examples for the given index and NLQ

Send the context through a language model to get a dense representation.

Store the representation of the examples in the database.

Find examples closest to the context of the NLQ and sample from them.

Insert the high-quality examples into the context of the small LLM to do ICL.

Idea #3: Fine-Tuning

Fine-tune the smaller models on far more high-quality examples.

Small LLMs won't have to In-Context Learn as much.

See my GitHub repo: https://github.com/queelius/elasticsearch-lm

Its README has a lot of verbiage.

I just ran it through GPT-4 and didn't bother to edit it much.

https://github.com/queelius/elasticsearch-lm

Discussion

