The XZ hack
(and what it
means to you)

NNNNNNNNNNNN

SSSSSSSSSSSSSSSSSSSSSS




Mea culpa

Totally forgot to line things up for this month.
Life:

Taxes

SSTFI

Eclipse

Little kid




Milwaukee '
Hamilton
Jetroit
Chicago
Salt Lake
City

New

Philadelph

Virginia Beach

Raleigh

Memphis Charlotte

Atlanta
Phoenix Dallas

Baton Rouge

San Antonio




CENTRAL IOWA LINUX USER GROUP

A GROUP OF FREE "NIX ENTHUSIASTS WHO ALL HAPPEN TO LIVE IN CENTRAL IOWA




About me

| sling code by day (with more and
more Linux and python all the
time)

Scientific Computing/Biggish data

Also somehow remain the
president of the CIALUG

https://denner.co

@adenner

https://hachyderm.io/@adenner


https://denner.co/

Thanks to

Sean for the
info dump

(LINKS AT THE END OF
THE SLIDE DECK)




TL;,DR

XZ utilities had a backdoor snuck into it (suspected by a nation
state)

It impacts version 5.6.0 and 5.6.1

Snuck code into sshd file that allows for code to be executed if you
have the encryption key and put signed code into your ssh login
certificate

The world owes thanks to Andres Freund for noticing it when he was
logging into his machine investigating and raising the red flag

Good news, unless you are bleeding edge, likely dodged the bullet,
this time...




XZ Outbreak (CVE-2024-3094)

f
EXZ Utils is a collection of open-source tools and libraries for the XZ compression format, that are used
i for high compression ratios with support for multiple compression algorithms, notably LZMA2.

\

et

[ §
EOn Friday 29th of March, Andres Freund (principal software engineer at Microsoft) emailed oss-

isecurity informing the community of the discovery of a backdoor in xz/liblzma version 5.6.0 and 5.6.1.
\

N

Github Activity Summary (user: JiaT75)

PR opened in oss-fuzz to Obfuscated/encrypted stages binary backdoor

JiaT75's first commit disable ifunc for fuzzing hidden in two test files:
Y :f::ss:}t/:guub.com/tukaam-project/n to the Xz repo builds. Allegedly to mask the ||  tests/files/bad-3-corrupt_lzma2.xz
g malicious changes. o tests/files/good-large_compressed.lzma.
2022-02-06 2023-07-08 2024-03-09
g?»"“o\-_——--o\\ """ OnmmmTr0, T
2021 S= -

> -~
2024-02-16

Malicious “build-to-host.m4" file added
to .qitignore, later incorporated to the v5.6.0 & v5.6.1
package release. I

packaged in the final releases J

e e e e e e e PO I the Firicirelecses

) } 2023-06-28
User Jia Tan (JiaT75)

creates his Github Account potential infrastructure testing:
liblzma: “Add ifunc implementation
to crcby_fast.e."

xz/libzma

tests/files/bad-3-corrupt_lzma2.xz

Substitution to uncorrupt
etes ot e i e 1 | een e ~
P ) * 0x09 (\t) are replaced with 0x20 *Uncorrupted*

® Ox20 (whitespace) are replaced with 0x09 bad-3-corrupt_lzma2.xz
® 0x2d(-) are replaced with Ox5f -
o 0x5f () are replaced with Ox2d

A
tage 1- Bash File tests/files/good-large_compressed.lzma

)

1.Decompress the file with xz -de

B i t: 86 F9 5AF7 2E (8 LA BC . . s ,
riesin sommen 2.Remove junk data from the file using multiple head tool calls

.
vseo Custom substitution (byte value mapping)

3.portion of the file is discarded (contains the binary backdoor)

o Bytes in comment: E5 55 89 87 24 04 D 17 4.Use custom substitution cipher to decipher the data S —
v5.61 ¢ Checkif script running on Linux X [ 5.Deciphered data is decompressed using xz -F raw --[zmal -dc | Bash script
® Custom substitution (byte value mapping)
Stage 2 - Bash File
v5.6.1 Extension Mechanism @ 2
"v5.6.0 Backdoor extraction 1.8earch Files: use grep -broafF in tests/files/ for K.}
An .o file extracted « integrated into compilation/linking S‘q::tj:'e:;“l e "ﬁle_namez;]ftfz:::siqmmre" %

1.Extract & decipher tests/files/good-large_compressed.lzma
2.Manipulate output with: LC_ALL=C sed "s/\(\)/\I\n/g"
3.Decrypt using AWK script (RCY-like)

No files with the signatures were
4.Decompress with xz -dc --single-stream GG o\‘Fs.et +7as $etart
i b.save second file's offset as $end

e https://twitter.com/frOgger_/status/1774342248437813525

liblzma_la-crc64-fast.o is then added @ fere foun seamente @FROGGER _

b. VL%, %412
2.1If Found:

b. Decipher with custom byte mapping

c.Decompress « execute data THOMAS ROCClA

to the compilation/linking process!




XZ Outbreak (CVE-2024-3094)

[
i XZ Utils is a collection of open-source tools and libraries for the XZ compression format, that are used
for high compression ratios with support for multiple compression algorithms, notably LZMA2.

 ———————————————— - —— - - - ——— - - -

1
1
I
\

10n Friday 29th of March, Andres Freund (principal software engineer at Microsoft) emailed oss-
i security informing the community of the discovery of a backdoor in xz/liblzma version 5.6.0 and 5.6.1.

A v ————————————————————————————————————————————————————————————————————————————————————————"




y A
"{O pe‘ nwa I I Products Services Publications Resources What's new

““ bringing security into
\ open environments

Follow @QOpenwall on Twitter for new release announcements and other news
[<prev] [next>] [thread-next>] [day] [month] [year] [list]

Date: Fri, 29 Mar 2024 08:51:26 =0700

From: Andres Freund <andresf...razel.de>

To: oss-securityf...ts.openwall.com

Subjeect: backdoor in upstream xz/liblzma leading teo ssh server compromise

Hi,

After observing a few odd symptoms around liblzma (part of the xz package) on
Debian s2id installations over the last weeks (logins with ssh taking a lot of
CPU, wvalgrind errors) I figured out the answer:

The upstream xz repository and the xz tarballs have been backdoored.

At first I thought this was a compromise of debian's package, but it turns out
to be upstream.

== Compromised Release Tarball ==

One portion of the backdoor is *solely in the distributed tarballs*. For
eagsier reference, here's a link to debian's import of the tarball, but it is
also present in the tarballs for 5.6.0 and 5.6.1:

https://salsa.debian.org/debian/xz-utils/-/blob/debian/unstable/m4 /build-to-host.mi?ref type=heads#L63

That line iz *not* in the upstream source of build-to-host, nor is
build-to-host used by xz in git. However, it is present in the tarballs
released upstream, except for the "source code" links, which I think github
generates directly from the repository contents:

https://github.com/tukaani-project/xz/releases/tag/v5.6.0
https://github.com/tukaani-project/xz/releases/tag/v5.6.1

This injects an obfuscated script to be executed at the end of configure. This
geript is fairly obfuscated and data from "test" .xz files in the repository.

https://www.openwall.com/lists/oss-
This seript is executed and, if some preconditions mateh, modifies secu I’Ity/2024/03/29/4

Sbuilddir/src/liblzma/Makefile to contain

am test = bad-3-corrupt lzma2.x=z




NIST N

Information Technology Laboratory

N H r gﬂ"l"%ﬁ% VULNERABILITY
NATIONAL VULNERABILITY DATABASE NVD

VULNERABILITIES

NOTICE UPDATE

NIST has updated the NVD program announcement page with additional information regarding recent concerns and the temporary delays in enrichment efforts.

AKX CVE-2024-3094 Detail

LSRG QUICK INFO
This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result in further changes to CVE Dictionary Entry:
the information provided. CVE-2024-3094
NVD Published Date:
.. 03/29/2024
Description NVD Last Modified:
Malicious code was discovered in the upstream tarballs of xz, starting with version 5.6.0. Through a series of complex obfuscations, the 04/12/2024
liblzma build process extracts a prebuilt object file from a disguised test file existing in the source code, which is then used to modify specific Source:
functions in the liblzma code. This results in a modified liblzma library that can be used by any software linked against this library, Red Hat, Inc.

intercepting and modifying the data interaction with this library.

https://nvd.nist.gov/vuln/d etaiI/CVE—2024—3094I




Github Activity Summary (user: JiaT75)

PR opened in oss-fuzz to Obfuscated/encrypted stages binary backdoor
- : . disable ifunc for fuzzing hidden in two test files:
Repository: JiaT75's first commit ; ]
& https://github.com/tukaani-project/xz to the Xz repo builds. Allegedly to mask the [ e tests/files/bad-3-corrupt_lzma2.xz
malicious changes. e tests/files/qood-large_compressed.lzma.
2022-02-06 2023-07-08 2024-03-09
g p "---O~__——"'O~\ o,”--'os__—""0~\ 0”’-—->
2021 e 2024-0216 =~
) 0T75 2023'06'28 xz/"bzma
S :.a T?:(JQQT ) Soeitial BFratA et e et Malicious “build-to-host.my" file added
CREQRES AIle SILUR Heeount ; s it g to .gitignore, later incorporated to the v5.6.0 & v5.6.1
liblzma: “Add ifunc implementation
package release.
to crebY_fast.c." l
Packaged in the final releases /,
f___—_—_—_—_—_—_—_—_—_—_—_—_-
53@% —>tests/files/bad-3-corrupt_lzma2.xz _B'
\15 Substitution to uncorrupt L
The MY macro is executed during the build @ g;\ malformed Xz file > &VI
process and runs the malicious code below. J @ : 7 . .
T e 0x09 (\t) are replaced with 0x20 Uncorrupted
N . .
& e 0x20 (whitespace) are replaced with 0x09 bad-3-corrupt_lzma2.xz

Ox2d (-) are replaced with Ox5f
Ox5f () are replaced with Ox2d




Stage 1 - Bash File

tests/files/good-large_compressed.lzma

e Bytesin comment: 86 F9 5A F7 2E 68 LA BC
e Custom substitution (byte value mapping)

v5.6.0

e Bytesincomment: E5 55 §9 87 24 04 D8 17
Check if script running on Linux
® Custom substitution (byte value mapping)

v5.6.1

¥
1.Decompress the file with xz -de

2.Remove junk data from the file using multiple head tool calls
3.Portion of the file is discarded (contains the binary backdoor)
Y.Use custom substitution cipher to decipher the data /
| 5.Deciphered data is decompressed using xz -F raw --lzmal -dc |

Stage 2 - Bash File

. v5.6.0 Backdoor extraction

An .o file extracted « integrated into compilation/linking
l.Extract « decipher tests/files/qood-large_compressed.lzma
2.Manipulate output with: LC_ALL=C sed "s/\(.\)/\I\n/g"
3.Decrypt using AWK script (RCY-like)
Y.Decompress with xz -dc --gingle-stream

5.Binary backdoor stored as liblzma_la-crc(a‘-!-Fast.q

liblzma_la-crc64-fast.o is then added
to the compilation/linking process!

/= v5.6.1 Extension Mechanism
1.Search Files: use grep -broaF in tests/files/ for

signatures: output:
a,~l wh, | I “file_name:offset:signature”
b."jVIA%", "%.R1Z"
2.If Found:

a.Save first offset + 7 as $start

b.Save second file's offset as $end
3.Next Steps:

a.Merge found segments

b. Decipher with custom byte mapping

¢c.Decompress & execute data

No files with the signatures were
found, however it highlights the
framework's potential modularity for

@FROGGER _
THomMAs RocciAa




7 )

*
XZ build process WIZ
7 7 0 7 7 )
0 — = Configure = Makefile o
7 _ / https://www.wiz.io/blog/
The build-to-host.m4 / Next) the configure script "‘hde MokeFile is executed cve-2024-3094-critical-
Vi s the .
seript is executed is executed with the 777 , rce-vulnerability-found-
w?thp malicious code obfuscated code. It RSA——P“"’I‘Q—T‘JQQ"‘/Pt@-""PI - til Y
that injects obfuscated "“"";P“l“tes [blzmo. linker S"MBOI o Pl?".\t > 7 e Re RS
code ke Al Naoks 3ure_' and c0mpi|er Plo«js within ancther malicious code in
seript the MakeFile to interfere runtime
with the syw\kol resolution 7/ 2
process > Compiled liblzma
/
\ S MBOIS /
Obfuscated Manipiulated re_lo'u‘tion
7 Code 7 fieg Interference RSA_public_
< j 7 ole,cn,p‘t@_....Pl

/
/’\ Commit Co~\\$/«-/ -
backdoor K ) -
| SSHD
. 7 /
‘Q Auth: ‘Publuc ;cet/ j_____-w-?;-» Public key authentication _(3) Extracts ond |
contains pay oadl process Qalls 7 \/Qr;{-‘.es po«/loo\d

RSA_public_decrypt@....cl
M t_{\:ﬁ‘/

O /

Threat _ (5)) Ree

{ systen0




Who is impacted?

In the clear:
o Ubuntu

(e]

Alpine Linux

(e]

Amazon Linux

Gentoo
Mint

(e]

(¢]




Who is impacted?

You have an issue:
* Debian (Sid unstable 5.5.1alpha-01 to 5.6.1-1)

Kali (updates between March 26 and 29)

OpenSUSE Tumbleweed and MicroOS rolling releases
March 7-March 28

Arch Linux

* Installation Medium 20240301.2180%94
* Virtual machine images 20240301.218094 and 20240315.221711
« Container images created between 2024-02-24 and 2024-03-28

Redhat (Fredora Rawhide and Fedora 40 linux beta)




strings “which xz* | grep '5\.6\.[01]’

Isof -p S(ps -aux | grep 'sshd' | grep 'listener' | awk '{print $2}')
How can | o e e [ rep tener [ ankorint 5270
grep '\.so' | grep 'liblzma

CheC < tO Can also use:

b e syre ? git clone https://github.com/jfrog/cve-2024-3094-tools.git
cd cve-2024-3094-tools/cve-2024-3094-detector/

.Jcve-2024-3094-detector.sh




()Y DO . YEC). e

) () - (_)C) C=dE0) (L)
G R ) P (2= 2= (L)) s
() (SX(9) EIE IS =) () (206
e G2 () 629 )i 6 B (_) (_)() ()
(o) L) () () (L) (o)) e (L) () e )
(L)) - L) (G ()R I LoD G E)

CVE-2024-3094 detector by JFrog

XZ vulnerable version: NO (5.2.5)
SSHD found in the system: NO
SSHD linked with LZMA: NO
LZMA vulnerable version: ./cve-2024-3094-detector.sh: line 112: [: : integer expression expected
.Jcve-2024-3094-detector.sh: line 116: [: : integer expression expected
./cve-2024-3094-detector.sh: 1line 120: [: : integer expression expected
NO
Specific Prologue byte pattern NOT matched
Encoded Strings byte patterns NOT matched

- Malicilous XZ/LZMA found: NO https://medium.com/@DCSO_CyTec/xz-backdoor-how-

- Vulnerable SSHD found: NO (SSHD not found) to-check-if-your-systems-are-affected-fb169b638271
Conclusion: NOT VULNERABLE TO CVE-2024-3094




MORE
TECHNICAL
INFO:
HTTPS://GITHUB.

COM/AMLWEEMS

[XZBOT

Deeper dive:


https://github.com/amlweems/xzbot
https://github.com/amlweems/xzbot
https://github.com/amlweems/xzbot

What does this mean for the future?

This is why we can’t have nice things
Projects have to take care to Know your Committers
Thankfully in this case many eyes helped, but only just

This is going to keep happening Jonathan Greig

April 15th, 2024

Technology

00000

Get more insights with the
Recorded Future

Intelligence Cloud.

Learn more.

https://therecord.media/researchers-stop-credible-takeover-xz-utils

Researchers stop ‘credible takeover attempt’
similar to XZ Utils backdoor incident

Security researchers have stopped a “credible” takeover attempt reminiscent of the recent XZ
Utils backdoor incident — further highlighting the urgent need to address weaknesses in the
management of open source software.

Researchers at the OpenJS Foundation — which monitors JavaScript projects used by billions
of websites worldwide — said Monday that they “received a suspicious series of emails with
similar messages, bearing different names and overlapping GitHub-associated emails.”

These emails implored OpenJS to take action to update one of its popular JavaScript projects
to “address any critical vulnerabilities,” yet cited no specifics, they said.

“The email author(s) wanted OpenJS to designate them as a new maintainer of the project
despite having little prior involvement,” said OpenJS Foundation Executive Director Robin
Bender Ginn and Open Source Security Foundation (OpenSSF) General Manager Omkhar
Arasaratnam.

The experts said the approach resembled the way a threat actor going by the name “Jia Tan"

P T T 1 I T A L T T 7Y A [ S

e T TR T S



https://therecord.media/researchers-stop-credible-takeover-xz-utils

ALL MODERN DIGITAL

INFRASTRUCTURE
N
[ R
f s
r ]
T
—ll
A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS
) BEEN THANKLESSLY
MAINTAINING
SINCE 2003

i

https://xkcd.com/2347/




000000000....““.
S@essesssermsssrmini i
“ m.."..’.oououu..

- 000000000

0000000000000 0000

000000000000 00000
CosssesneititiiLlLLL L

00000000000 000000
.
W:...‘..."..nnum
peeee?

(LLL e0 00!
‘ PCL LI e e
00?
L LA

Additional Info (Thanks
Sean)

https://www.offsec.com/offsec/xz-backdoor/

https://github.com/amlweems/xzbot

https://www.wiz.io/blog/cve-2024-3094-critical-rce-
vulnerability-found-in-xz-utils

https://twitter.com/frOgger /status/1774342248437813
525



https://www.offsec.com/offsec/xz-backdoor/
https://github.com/amlweems/xzbot
https://www.wiz.io/blog/cve-2024-3094-critical-rce-vulnerability-found-in-xz-utils
https://www.wiz.io/blog/cve-2024-3094-critical-rce-vulnerability-found-in-xz-utils
https://twitter.com/fr0gger_/status/1774342248437813525
https://twitter.com/fr0gger_/status/1774342248437813525

	Slide 1: The XZ hack (and what it means to you)
	Slide 2: Mea culpa
	Slide 3
	Slide 4
	Slide 5: About me
	Slide 6: Thanks to Sean for the info dump
	Slide 7: TL;DR
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Who is impacted?
	Slide 16: Who is impacted?
	Slide 17: How can I check to be sure?
	Slide 18
	Slide 19: Deeper dive:
	Slide 20: What does this mean for the future?
	Slide 21
	Slide 22: Additional Info (Thanks Sean)

