
LOCAL LLMS FOR FUN AND
(HOPEFULLY SAVING)

PROFIT

ANDREW DENNER

ST LOUIS LINUX USER’S GROUP

AUGUST 13, 2025

2

ABOUT ME

L I N U X U S E R S I N C E 2 0 0 3

S C I E N T I F I C C O M P U T I N G S C I E N T I S T

C E N T R A L I O W A L I N U X U S E R S G R O U P

H T T P S : / / D E N N E R . C O

@ A D E N N E R — X

H T T P S : / / W W W. L I N K E D I N . C O M / I N

/ A N D R E W D E N N E R /

3

DESCRIPTION
Discover the joy of running language models
locally—without breaking the bank. This session
dives into setting up Ollama and explores
creative ways to use local models for practical
tasks, experimentation, and maybe even a few
cost-saving wins. We’ll explore Ollama Turbo for
scaling up, show how uv makes quick Python
projects effortless, and use VS Code to turn your
local dev setup into a smooth, productive
environment. Whether you're optimizing
workflows or just vibing with your own AI, this
talk is packed with tools, tips, and energy to help
you go further with local LLMs.

May be slightly over selling but we can find out after the talk 

4

EXPECTATIONS MANAGEMENT

What this talk isn’t:

• Perfectly polished

• Presented by a true “expert”

• Error free

What this talk is:

• A good starting point

• On super high performance hardware

• Hopefully entertaining

• Whipped up starting on Saturday

5

WHAT IS A LLM?

 What It Can Do:

Understand context and intent in language

Generate coherent, natural-sounding text

Answer questions, summarize info, write code, and
more

Handle multi-turn conversations and reasoning tasks

 Why “Large”?

Refers to scale of training data and number of
parameters

Enables broader generalization and deeper
understanding

 What Is a Large Language Model (LLM)?

“A Large Language Model is a type of AI trained
to understand and generate human language.”

 Core Characteristics:

Architecture: Built using transformer neural
networks

Training: Exposed to massive amounts of text to
learn patterns, context, and meaning

Size: Typically billions to trillions of parameters

Modality: Primarily textual, though some LLMs
now support images, audio, and even code

6

TOKENS

Building blocks of how ai models generate text.

Can be:
• Whole words (“hello”)
• Sub words (“un” “believe” “able”)
• Multi word phrases (New York City”)
• Models process tokens, not characters or words.
• Count impacts speed, cost, and context limits
• Common phrases can be compressed into fewer tokens
• https://gpt-tokenizer.dev/

7

8

THE STOCHASTIC PARROT

Emily M Bender in 2021 paper “on the dangers of stochastic parrots: can Language models
be too big?”

Stochastic: This term refers to processes that are randomly determined, highlighting that
LLMs operate based on probabilistic associations rather than comprehension. They
generate text by predicting the next word in a sequence based on patterns in their training
data.

Parrot: This part of the metaphor emphasizes the idea that LLMs can mimic human
language without grasping its meaning, similar to how a parrot can repeat phrases without
understanding them.

9

https://dl.acm.org/doi/10.1145/3442188.3445922

10

11

This does bring up the concept of temperature… if you always go with the most predictable
word each time it is far more boring… randomly choose other paths!

12

LLM TIMELINE

[1706.03762] Attention Is All You Need
LLM2024.pdf Stanford CS124

13

Comparing Large Cloud-Based LLMs vs. Smal l Local
Models

Small Local Models (e.g. Phi-2, Gemma 2B)Very Large LLMs (GPT-4 / GPT-5)Feature

<7B parameters100B–Trillion+ parametersModel Size

Runs locally on CPU/GPUCloud-only (API access)Hosting

Moderate (2K–128K depending on variant)Massive (32K–>100K tokens)Context Window

Instant response, no internet neededDepends on network & APILatency

Free/local after initial setupAPI charges per tokenCost

Utility agents, quick lookup, fallback routingGeneral AI, multi-step reasoning, synthesisUse Cases

Full data privacy (local execution)Data shared over APIPrivacy

Local fine-tuning or adapters like LoRACustom GPTs or fine-tuning via OpenAI toolsTuning

14

TECH STACK

P Y T H O N 3 . 1 2

J U P Y T E R N O T E B O O K & V S C O D E

O L L A M A

U V P Y T H O N P A C K A G E M A N A G E R

M O D E L S :

G E M M A

G P T - O S S

15

OLLAMA—MAKES LOCAL AI FEEL LIKE CLOUD AI
WITHOUT THE CLOUD

• Privacy by design

• Offline capability

• Simple setup

• Model Flexible

• Multi modal support

• Context control

Ideal for:

• RAG and LangChain/LangGraph

• Prototypes

• Privacy First

Dev Friendly:

• Cli Tools

• Modular engine

• Active development and Github community

Ollama is a streamlined platform for running large language models locally—on your own
machine, with no cloud dependency.

Feature Benefit
Privacy by Design Keeps data on your device—ideal for sensitive or regulated
workflows
Offline Capability Run models without internet—great for remote or air-fpped
environments
Simple Setup GUI for Mac/Windows + CLI for devs—no complex installs
Model Flexibility Supports LLaMA, Gemma, DeepSeek, Qwen, GPT-OSS, and
more
Multimodal Support Analyze text, code, and images with drag-and-drop simplicity
Context Control Adjust memory up to 128k tokens for long-form reasoning

16

INSTALLING OLLAMA

• Needs:

• Ubuntu 20.04 or better (24.04+ best)

• Several GB of space

• Gpu is best, cpu works though

• First update (apt update; apt upgrade)

• curl -fsSL https://ollama.com/install.sh | sh

Test using ollama –version
Ollama pull llama3
Ollama run llama3

Curl –fsSL https://ollama.com/install.sh | sh

fsSL what?
Journalctl –u ollama –no-pager

17

LETS TALK MODELS—A BRIEF SAMPLE
NotesStrengthsSizesCreatorModel

8b runs well locally
(quantized)

High Quality
reasoning and
multilingual

8B, 70BMetaLLaMA3

Great for laptops and
low powered rigs

Light weight,
efficient, open
weights

2b, 4b 7bGoogleGemma

Uses MoESmall fast and
surprisingly capable

7b, mixtral 12x7bMistral aiMistral

Ideal embedded or
edge

Small fast,
surprisingly capable

3.8b, 7bMicrosoftPhi-3

Best with GPU
Tuned for search
tasks

Tuned for RAG35BCohereCommand R+

18

GPT OSS—A NEW PLAYER

Open weight release

20B model can run on consumer hw

120B targets H100 class GPU

Supports tool use, Chain of thought reasoning and

structured messages

MoE architecture

20b model requires 16 gb vram or 24 gb ram

MoE on next slide

19

“OPEN SOURCE” VS OPEN WEIGHTS

Open source:

• OSI approved licenses

• Study, modify, and redistribute—including

derivatives and commercial use

• Reproducibility or modify (interface/training

code, model definition and weights)

Open Weights:

• Weights are downloadable and runnable locally

• Often restricted use (no commercial, no

redistribution, no training other models etc)

• Training data, full training code not released

20

WHAT IS MIXTURE OF EXPERTS

Input →

GaƟng Network →

Select Experts →

Process →

Aggregate Output

Why:

• Efficiency

• Scalability

• Specialization

Graphic from: architecture.png (1139×918) (deep seek ai)

A Mixture of Experts is a neural network architecture that splits computation across
multiple specialized sub-networks—called experts—and activates only the most relevant
ones per input.

Component Role
Experts Specialized sub-networks trained to handle specific types of
input
Gating Network Routes each input to the most relevant experts based on
learned logic
Sparse Activation Only a few experts are activated per input, reducing compute
cost

Efficiency: Less compute per token → faster inference
Scalability: Enables massive models without proportional resource demands
Specialization: Experts learn disƟnct tasks → beƩer performance on diverse inputs

Real-World Use
Used in models like GPT-OSS, Mixtral, and Switch Transformers

21

Ideal for multi-agent systems, RAG pipelines, and modular workflows

21

OLLAMA TURBO—GPU IN THE
CLOUD
• Beta service from ollama—data center level

gpu use in US Based cloud

• Currently $20 a mo

• Gpt oss 120b

• Gpt oss 20b

• Claims strict privacy and no retention

I admit that it is a bit of a cheat to the “I’m going to run this all locally” but my Linux
computer is also a bit of a potato…
I am using some for this talk to speed things up plus I don’t have the best GPU on this
demo machine

22

Windows &Mac has a nice gui

23

Full Text response:
explain how variadic c++ templates are useful
edit
Thought for 1.7 seconds
The user asks: "explain how variadic C++ templates are useful". Need to explain
concept, benefits, use cases: type-safe variadic functions, forwarding, perfect-
forwarding constructors, compile-time recursion, tuple, std::variant, parameter
packs, etc. Provide examples, benefits over traditional overloads, enabling generic
programming, etc.
Provide clear explanation, perhaps code snippets. Also mention C++11 introduction,
C++14/17 enhancements. Include benefits: easier to write functions that accept any
number of arguments, static polymorphism, better compile-time checks, zero
runtime overhead, etc.
Will answer in a user-friendly manner.
What a “variadic template” is
A variadic template (introduced in C++11) lets a template take an arbitrary number
of template parameters – either types, non-type values, or a mixture of both.
The syntax is a parameter pack:

24

template<class... Ts> // a pack of types named Ts struct tuple; // e.g. std::tuple<Ts...>
Ts... stands for “zero or more types”. Inside the definition you can expand the pack
with Ts... again, or you can recursively decompose it (e.g. T, Rest...). The same idea
works for non-type packs (int... Is) and for packs of template arguments
(template<class...> class... Templates).
Why you would want it – the practical benefits
1. One generic definition replaces dozens of overloads
Before variadic templates you would write a family of overloads for each possible
arity:
// before C++11 – 2 overloads for 1 and 2 arguments void print(const std::string& a);
void print(const std::string& a, const std::string& b);
With a variadic template you get any number of arguments with a single definition:
template<class... Args> void print(const Args&... args) { (std::cout << ... << args) <<
'\n'; // fold expression (C++17) }
Result: no more boiler-plate, and the code stays correct when you add new
overloads.
2. Type-safe “variadic” functions
printf is variadic, but the compiler can’t check that the format string matches the
argument types. A variadic template can perform static checks:
template<class... Args> std::string format(const std::string& fmt, Args&&... args) {
static_assert(sizeof...(Args) == count_placeholders(fmt), "argument count
mismatch"); // … }
If the user calls format("%d %s", 42, "hello") the compiler verifies the number (and
can even verify each type with extra traits). The resulting function is as flexible as
printf but type-safe.
3. Perfect-forwarding constructors / factory functions
A common pattern in generic libraries is to forward any set of arguments to a
member’s constructor:
template<class T, class... Args> std::unique_ptr<T> make_unique(Args&&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); }
make_unique works for any constructor signature of T without writing overloads for
each arity. The same technique powers:
std::vector::emplace_back
std::optional/std::variant constructors
User-defined “builder” classes that forward arguments to sub-objects
4. Compile-time collections: std::tuple, std::variant, std::array
All of these are implemented with variadic templates:
using my_tuple = std::tuple<int, std::string, double>;
The type list int, std::string, double is stored as a pack. Accessors (std::get<Idx>) are
generated by recursively peeling off the first type until the desired index is reached –
all done at compile time, no runtime indexing needed.

24

5. Generic recursion / Fold expressions
Before C++17 you would write a recursive helper to operate on each argument:
void foo() {} // base case template<class First, class... Rest> void foo(const First& f,
const Rest&... r) { process(f); foo(r...); // recurse on the rest }
C++17 introduced fold expressions, which collapse a pack with a binary operator:
template<class... Args> void foo(const Args&... args) { (process(args), ...); // left-fold
over ',' }
Both patterns let you write generic algorithms (sum, product, printing,
serialization…) that automatically scale to any number of arguments.
6. Metaprogramming utilities – std::index_sequence
Variadic packs pair naturally with parameter-pack expansion:
template<std::size_t... I, class Tuple> auto tuple_to_array_impl(const Tuple& t,
std::index_sequence<I...>) { return std::array{ std::get<I>(t)... }; }
std::index_sequence is itself a variadic pack of std::size_t values. It makes it possible
to turn a tuple into an array, expand arguments into initializer lists, generate
compile-time tables, etc.
7. Zero-runtime overhead
Because the pack is resolved at compile time, the generated code is as if you had
written a separate function for each arity. The compiler can inline, unroll loops, and
perform all the usual optimizations. There is no runtime loop or dynamic
dispatch involved unless you deliberately introduce one.
A concrete example: a tiny log function
// log.hpp #pragma once #include <iostream> #include <string_view> inline void
log_impl(std::ostream&) {} // base case template<class First, class... Rest> void
log_impl(std::ostream& os, const First& f, const Rest&... r) { os << f; // print current
argument if constexpr (sizeof...(Rest) > 0) os << ' '; // separator only if more args
log_impl(os, r...); // recurse } // public interface template<class... Args> void log(const
Args&... args) { log_impl(std::cout, args...); std::cout << '\n'; }
Why this is useful
One function works for any number of arguments, any mix of printable types.
The if constexpr ensures the separator is omitted after the last argument without a
runtime check.
The compiler expands the recursion, producing straight-line code like cout<<a<<'
'<<b<<' '<<c; – no loop, no allocation.
Summary checklist
What you get with variadic templatesHow it helps youSingle generic definition for
any arityReduce boilerplate, avoid missing overloadsStatic type checking of
argumentsSafer APIs than C-style ...Perfect-forwarding of constructor
argumentsWrite factories, emplace_*, make_* onceCompile-time
containers (tuple, variant, array)Store heterogeneous data without runtime
costRecursive or fold-based algorithmsWrite summations, printers, serializers that

24

scale automaticallyMetaprogramming
utilities (index_sequence, integer_sequence)Generate indices, build compile-time
tablesZero runtime overheadGenerated code is as efficient as hand-written
overloadsIn short, variadic templates give C++ the power of true compile-time
variadic functions, enabling expressive, type-safe, and high-performance generic
code that previously required a lot of manual duplication or unsafe tricks. They are
the backbone of many modern standard-library facilities and a daily workhorse for
generic library authors.
Downloading model

24

A brief side quest to look at UV

25

A BRIEF DIVE INTO UV
Turbocharged python package manager with
speed, determinism, and modern deployment

• Blazing Fast Installs

• Smarter dependency Resolution

• All in one tooling

• Compatibility to Pip-tools and Poetry

• Reproducibility first

• This is just a brief overview… could likely give a whole talk on this!

• UV was created by Astral–Same team behind linter Ruff
• US based development company
• Known for high-performance tooling in rust

• Blazing Fast Installs
• Built in rust for performance
• Installs dependencies faster than pip and venv

• Smarter dependency Resolution
• Supports pyproject.toml and lock files natively
• Uses logic akin to cargo or npm

• All in one tooling
• Handles virtual environments and package management all in one clean

interface
• Compatibility to Pip-tools and Poetry

• It plays nice and respects either toolset integrating in your workflow
• Reproducibility first

• Built in deterministic environments perfect for:
• Ci
• Container builds

26

• System level python installs
• Why I love it as a linux user:

• No reliance on bloated python binaries
• Smooth shell tools and dot file based setups
• So much nicer than pip hell

26

GETTING STARTED

C U R L - L S S F

H T T P S : / / A S T R A L . S H / U V / I N S T A L L . S H | S H

O R

P I P I N S T A L L U V

O R

W I N G E T I N S T A L L – I D = A S T R A L - S H . U V - E

Add copy and paste

27

LET'S ACTUALLY GET STARTED NOW:

U V P Y T H O N I N S TA L L 3 . 1 2 (O R C A N D O M U LT I P L E I . E . U V P Y T H O N I N S TA L L 3 . 1 2

3 . 1 1)

U V P Y T H O N L I S T

U V P Y T H O N U P G R A D E 3 . 1 2 (O R U V P Y T H O N U P G R A D E)

U V I N I T – S C R I P T E X A M P L E . P Y – P Y T H O N 3 . 1 2

U V A D D PA N D A S (- - D E V – O P T I O N A L)

U V L O C K

Uv will use existing python version if possible
Force system python with –no-managed-python

Uv python upgrade– all managed versions

Uv run example.py will run with no dependencies

If pyproject.toml exists will install needs before running

--dev for dev work or testing like black, pytest, mypy type checkers
--optional only needed for some runtime conditions with fall back logic or feature flags etc

28

UVX—DO A THING
WITHOUT INSTALLING
IT

U V X B L A C K (S A M E A S U V T O O L S R U N

B L A C K)

U V X P Y C O W S A Y H E L L O L U G

A S A N A S I D E :

I F T O O L I S I N S I D E O F P R O J E C T A N D

R E Q U I R E S P R O J E C T B E I N S T A L L E D

(P Y T E S T) U S E U V R U N I N S T E A D

Tools are installed in a temp environment

29

JUPYTER NOTEBOOK

I N T E R A C T I V E D O C U M E N T T H AT

B L E N D S :

• C O D E

• O U T P U T

• T E X T (M A R K D O W N)

Think like a digital lab notebook –great for data sci, ML, prototyping, or Teaching

We are going to use it in VS Code
Setup the python extension
create an Ipynb
select a python interpeter

30

VS CODE

 Packages:

• Python

• Jupyternotebook

• Ollama autoencoder

• continue

31

IMAGE TO TEXT

 As Gemma is based off of Gemini it can do image recognition.

 Multimodal

Multimodal –The vision and language bits were trained at the same time as a part of the
same process from the ground up

32

As you can see in the visualization above, Gemini’s multimodal architecture flows like a
single, integrated pipeline rather than a stitched-together system:
Image Patches & Text Tokens enter in parallel — the visual side is broken into patches (like
ViT), while the text side is tokenized.
Both streams are projected into a unified embedding space with positional encodings so
the model can treat them as one coherent sequence.
Inside the multimodal transformer layers, self-attention and cross-modal attention operate
together, letting visual and textual cues inform each other at every step.
Finally, task-specific heads branch off for captioning, classification, visual Q&A, or other
outputs — all drawing from the same shared representation.
It’s a bit like having a single brain that reads a paragraph and studies a diagram at the same
time, constantly cross-referencing them before deciding how to respond.

33

HANDWRIT ING TO TEXT

I M A G E I N P U T I N G E S T E D A L O N G S I D E T E X T

I M A G E S P L I T I N T O S M A L L T I L E S

T E X T I S T O K E N I Z E D (P R O M P T S I D E)

U N I F I E D E M B E D D I N G S P A C E

M U LT I M O D A L T R A N S F O R M E R L A Y E R S

T A S K S P E C I F I C H E A D : T E X T G E N E R AT I O N

Handwriting → Text in Gemini
Image Input

You provide the handwritten note as an image (e.g., a photo or scan).
Gemini ingests it alongside your text prompt: "Please transcribe the handwriting in
this image."

Image Patching
The image is split into small, fixed-size patches (like tiles in a mosaic).
Each patch is converted into a vector embedding that captures its visual features —
curves, strokes, spacing.

Text Tokenization (Prompt Side)
Your instruction text is tokenized into embeddings.
Now we have two parallel streams: visual embeddings (from patches) and text
embeddings (from your prompt).

Unified Embedding Space
Both streams are projected into the same multimodal embedding space.
This lets the model treat “a loop in the letter g” and “the word ‘going’” as related
concepts.

Multimodal Transformer Layers
Self-attention and cross-modal attention allow the model to:

Recognize letter shapes and sequences.

34

Use language priors to resolve ambiguous handwriting (e.g., “rn” vs. “m”).
Maintain context across the whole note.

Task-Specific Head: Text Generation
The model outputs a sequence of text tokens — the transcription.
This can be plain text or structured (e.g., JSON with line breaks preserved).

34

A BRIEF CHAT ABOUT SIZE

Gemma expects 896x896 images

~256 tokens

Siglip encoder can scan across—”Pan and scan”

Not pixel perfect

Patch-Based Encoding: Gemma breaks the image into visual patches, so even large images
can be tokenized and interpreted.
Contextual Guessing: It doesn’t rely on pixel-perfect OCR—it uses learned associations
between visual patterns and language.
Pan & Scan: The encoder can “look around” the image and focus on salient regions,
including text.

35

36

37

38

39

40

41

42

43

44

OCR

S U D O A P T I N S TA L L T E S S E R A C T - O C R

T E S S E R A C T I N P U T. P N G O U T P U T.T X T

C AT O U T P U T.T X T

Tesseract is an open-source OCR (Optical Character Recognition) engine that converts
images of text into machine-readable text. Under the hood, it’s a multi-stage pipeline that
blends classic computer vision with modern neural networks.

 How It Works — Step by Step
Image Preprocessing

Cleans and normalizes the input image to improve recognition accuracy.
Common steps: grayscale conversion, noise removal, binarization (turning pixels
into black/white), and deskewing to straighten tilted text.

Text Localization
Detects where text regions are in the image.
Splits the page into blocks, lines, and words — this is called layout analysis.

Character Segmentation
Breaks each word into individual character shapes (glyphs).
Handles tricky cases like touching or overlapping letters.

Recognition Engine
Legacy mode (Tesseract 3): Pattern-matching against stored character shapes.
Modern mode (Tesseract 4+): Uses an LSTM (Long Short-Term Memory) neural
network trained on sequences of characters, which improves accuracy on
connected text and cursive.

Post-Processing

45

Applies a dictionary and language model to correct likely errors.
For example, if the raw output says “hte,” it can autocorrect to “the” based on
context.

45

46

47

48

49

A DEEP DIVE TO DEMO LAND

50

TROUBLESHOOTING

“GPU not detected?” → run nvidia-smi / check drivers

“Ollama not found?” → PATH or service not started

“OOM?” → choose smaller/quantized model

51

QUESTIONS??

52

