LOCAL LLMS FOR FUN AND
(HOPEFULLY SAVING)
PROFIT

ANDREW DENNER
ST LOUIS LINUX USER’S GROUP
AUGUST 13, 2025

ABOUT ME

LINUX USER SINCE 2003
SCIENTIFIC COMPUTING SCIENTIST
CENTRAL IOWA LINUX USERS GROUP

HTTPS://DENNER.CO

@ADENNER—X
HTTPS://WWW.LINKEDIN.COM/IN
/ANDREWDENNER/

DESCRIPTION

Discover the joy of running language models
locally—without breaking the bank. This session
dives into setting up Ollama and explores
creative ways to use local models for practical
tasks, experimentation, and maybe even a few
cost-saving wins. We’ll explore Ollama Turbo for
scaling up, show how uv makes quick Python
projects effortless, and use VS Code to turn your
local dev setup into a smooth, productive
environment. Whether you're optimizing
workflows or just vibing with your own Al, this
talk is packed with tools, tips, and energy to help
you go further with local LLMs.

May be slightly over selling but we can find out after the talk ©

EXPECTATIONS MANAGEMENT

What this talk isn’t: What this talk is:

Perfectly polished A good starting point

Presented by a true “expert” On super high performance hardware

Error free Hopefully entertaining

Whipped up starting on Saturday

WHAT IS A LLM?

@ What Is a Large Language Model (LLM)? Ik What It Can Do:
“A Large Language Model is a type of Al trained Understand context and intent in language
to understand and generate human language.” Generate coherent, natural-sounding text
Core Characteristics: Answer questions, summarize info, write code, and
Architecture: Built using transformer neural more
networks Handle multi-turn conversations and reasoning tasks
Training: Exposed to massive amounts of text to
learn patterns, context, and meaning ®. Why “Large”?
Size: Typically billions to trillions of parameters Refers to scale of training data and number of
parameters

Modality: Primarily textual, though some LLMs

now support images, audio, and even code Enables broader generalization and deeper
understanding

TOKENS

Building blocks of how ai models generate text.

¢ Whole words (“hello”)

® Sub words (“un” “believe” “able”)

e Multi word phrases (New York City”)

¢ Models process tokens, not characters or words.

e Count impacts speed, cost, and context limits

e Common phrases can be compressed into fewer tokens
o https://gpt-tokenizer.dev/

Welcome to gpt-tokenizer playground!
The most feature-complete GPT token encoder/decoder with support for OpenAl models: o1, GPT-40 and GPT-4, GPT-3.5 and others.

Encoding: [0200k_base (GPT-40) v|

“"New York City is bustling." Now is the time for all good men to come to the aid of their party

| Clear |

"New York City is bustling."” Now is the time for all good men to come to the aid of their party

13443617556863821245543692654938229010583957221899196631630633162901376532810437362220

Emily M Bender in 2021 paper “on the dangers of stochastic parrots: can Language models
be too big?”

Stochastic: This term refers to processes that are randomly determined, highlighting that
LLMs operate based on probabilistic associations rather than comprehension. They
generate text by predicting the next word in a sequence based on patterns in their training
data.

Parrot: This part of the metaphor emphasizes the idea that LLMs can mimic human
language without grasping its meaning, similar to how a parrot can repeat phrases without
understanding them.

s

On the Dangers of Stochastic Parrots:

Can Language Models Be Too Big? §

Emily M. Bender”
ebender@uw.edu
University of Washington
Seattle, WA, USA

Angelina McMillan-Major
aymm@uw.edu
University of Washington
Seattle, WA, USA

ABSTRACT

The past 3 years of work in NLP have been characterized by the
development and deployment of ever larger language models, es-
pecially for English. BERT, its variants, GPT-2/3, and others, most
recently Switeh-C, have pushed the boundaries of the possible both
through architectural innovations and through sheer size. Using
these pretrained models and the methodology of fine-tuning them
for specific tasks, researchers have extended the state of the art
on a wide array of tasks as measured by leaderboards on specific
benchmarks for English. In this paper. we take a step back and ask:
How big is too big? What are the possible risks associated with this
technology and what paths are available for mitigating those risks?

Timnit Gebru®
timnit@blackinai.org
Black in Al
Palo Alto, CA, USA

Shmargaret Shmitchell
shmargaret shmitchell@gmail.com
The Aether

alone, we have seen the emergence of BERT and its variants [39,
70,74, 113, 146], GPT-2 [106], T-NLG [112], GPT-3 [25], and most
recently Switch-C [43], with institutions seemingly competing to
produce ever larger LMs. While investigating properties of LMs and
how they change with size holds scientific interest, and large LMs
have shown improvements on various tasks (§2), we ask whether
enough thought has been put into the potential risks associated
with developing them and strategies to mitigate these risks,

We first consider environmental risks. Echoing a line of recent
waork outlining the environmental and financial costs of deep learn-
ing systems [129], we encourage the research community to priori-
tize these impacts. One way this can be done is by reporting costs

We provide dations including weighing the
tal and financial costs first, investing resources into curating and
carefully documenting datasets rather than ingesting everything on

the web, carrying out pre-development exercises evaluating how
the planned approach fits into research and development goals and
supports stakeholder values, and encouraging research directions
beyond ever larger language models.

CCS CONCEPTS

and e ing works based on the amount of resources they con-
sume [57]. As we outline in §3, increasing the environmental and
financial costs of these models doubly punishes marginalized com-
munities that are least likely to benefit from the progress achieved
by large LMs and most likely to be harmed by negative environ-
mental consequences of its resource consumption. At the scale we
are discussing (outlined in §2), the first consideration should be the
environmental cost.

Just as environmental impact scales with model size, so does

https://dl.acm.org/doi/10.1145/3442188.3445922

10

ChatGPT
How many r' in ‘strawberry’
ChatGPT
Thera are two ' characters in the word

awberry'

You
Check again please

ChatGPT

Are you 10

ChatGPT
Iam 100 re. The word

'strawherry’ o 'r' characters.

You
Would et am ol on this?

R's (40%)
//"
‘
in(70%) |
rd \\.
v)
the (80%) a (15%)
{ b
word (90%) - name (5%)
o i =
{) b
strawberries (95%) banana (2%) apple (1%)

L)
Final Sentence: There are
two Rs in the word
strawberries.’

| Thereare

. i v) v
two (50%) | many (20%) a (15%) some (10%) few (5%)
. . H 3
apples (20%) cholces (10%) boaks (10%) ways (20%)
. 3
of (20%) on (10%)
)
this (5%)
3
sentence (5%)
))
grapes (1%) oranges (1%)

This does bring up the concept of temperature... if you always go with the most predictable
word each time it is far more boring...

randomly choose other paths!

12

LLM TIMELINE

Attention Is All You Need z 2 3
A very approximate timeline

SGopihan Cuticham Gl Gt R 1990 Static Word Embeddings
A o

2003 Neural Language Model

Liion .ltwles’h L'\”dnn N, m]!ner ! Lukasz Kaiser*
, Goosle Researc ey of Toroulo | Google Brain 2008 Multi-Task Learni ng

la Polosukhin * 2015 Attention
i1lia.polosukhintgeail. com
2017 Transformer
2018 Contextual Word Embeddings and Pretraining
The uum_lmml \'n;qncm\: ::an\duumn models are h:t.k'l‘: :‘n -\:nmplcx:cumm ::1
Pl st papbelip Ui tedesyrmdaiolsnadides 2019 Prompting

We propose a new simple network architecture, the Transformer,
‘ ool

Abstract

+French translation task,

a BLEL score of 41.8 alter
training for 3.5 days on cight GPUs, a small fraction of the f costs of the
est models from the literature. W show that the Transformer lizes well 1o

other tasks by applying it successfully to English constiswency parsing both with

g it
Targe and limited taining data

[1706.03762] Attention Is All You Need
LLM?2024.pdf Stanford CS124

Comparing Large Cloud-Based LLMs vs. Small Local
Models

Feature Large LLMs (GPT-4 / GPT-5) Small Local Models (e.g. Phi-2, Gemma 2B)
Model Size 100B-Trillion+ parameters <7B parameters

Hosting Cloud-only (API access) Runs locally on CPU/GPU

Context Window Massive (32K—>100K tokens) Moderate (2K-128K depending on variant)

Latency Depends on network & API Instant response, no internet needed

Cost API charges per token Free/local after initial setup

Use Cases General Al, multi-step reasoning, synthesis Utility agents, quick lookup, fallback routing

Privacy Data shared over API Full data privacy (local execution)

Tuning Custom GPTs or fine-tuning via OpenAl tools Local fine-tuning or adapters like LORA

14

TECH STACK

PYTHON3.12
JUPYTER NOTEBOOK & VS CODE
OLLAMA
UV PYTHON PACKAGE MANAGER
MODELS:

GEMMA

GPT-0SS

15

Privacy by design
Offline capability
Simple setup

Model Flexible
Multi modal support

Context control

OLLAMA—

MAKES LOCAL Al FEEL LIKE CLOUD Al
WITHOUT THE CLOUD

Ideal for:
RAG and LangChain/LangGraph
Prototypes
Privacy First
Dev Friendly:
Cli Tools
Modular engine

Active development and Github community

Ollama is a streamlined platform for running large language models locally—on your own
machine, with no cloud dependency.

Feature

Privacy by Design
workflows

Offline Capability
environments
Simple Setup

Model Flexibility
more

Multimodal Support
Context Control

Benefit
Keeps data on your device—ideal for sensitive or regulated

Run models without internet—great for remote or air-fpped

GUI for Mac/Windows + CLI for devs—no complex installs
Supports LLaMA, Gemma, DeepSeek, Qwen, GPT-0SS, and

Analyze text, code, and images with drag-and-drop simplicity
Adjust memory up to 128k tokens for long-form reasoning

16

INSTALLING OLLAMA

Needs:
Ubuntu 20.04 or better (24.04+ best)
Several GB of space
Gpu is best, cpu works though

First update (apt update; apt upgrade)

curl -fsSL https://ollama.com/install.sh | sh

Test using ollama —version
Ollama pull llama3
Ollama run llama3

Curl —fsSL https://ollama.com/install.sh | sh

fsSL what?
Journalctl —u ollama —no-pager

17

LETS TALK MODELS—A BRIEF SAMPLE

Model Creator Sizes Strengths \[e] =13

LLaMA3 Meta 8B, 70B High Quality 8b runs well locally
reasoning and (quantized)
multilingual

Gemma Google 2b,4b 7b Light weight, Great for laptops and
efficient, open low powered rigs
weights

Mistral Mistral ai 7b, mixtral 12x7b Small fast and Uses MoE

surprisingly capable

Phi-3 Microsoft 3.8b, 7b Small fast,
surprisingly capable

Ideal embedded or
edge

Command R+ Cohere 35B Tuned for RAG

Best with GPU
Tuned for search
tasks

18

GPT OSS—A NEW PLAYER

Open weight release
20B model can run on consumer hw

120B targets H100 class GPU

Supports tool use, Chain of thought reasoning and G PT o ss
-
structured messages

MoE architecture

20b model requires 16 gb vram or 24 gb ram

MoE on next slide

19

“OPEN SOURCE” VS OPEN WEIGHTS

Open source: Open Weights:
OSl approved licenses Weights are downloadable and runnable locally
Study, modify, and redistribute—including Often restricted use (no commercial, no
derivatives and commercial use redistribution, no training other models etc)
Reproducibility or modify (interface/training Training data, full training code not released

code, model definition and weights)

WHAT IS MIXTURE OF EXPERTS

i
() Routed Expert '

|
H ; i

e BIGASEL | Output Hidden h; [() shared Expert ' In put S
I i
® R !

! [', 1 Gating Network >
Select Experts >

Process -

Aggregate Output

E] 1t Cached During Inference |

: Output idden w,[OOOO ~~ OOOQ ; Why:

i . ;

i) Multi-Head A ! . e

; ulti-Head Attention] ; EffICIency

b
1
i

T
ey kD Gy

k? {5}

apply

Scalability

Specialization

Graphic from: architecture.png (1139x918) (deep seek ai)

A Mixture of Experts is a neural network architecture that splits computation across
multiple specialized sub-networks—called experts—and activates only the most relevant
ones per input.

Component Role

Experts Specialized sub-networks trained to handle specific types of
input

Gating Network Routes each input to the most relevant experts based on
learned logic

Sparse Activation Only a few experts are activated per input, reducing compute
cost

Efficiency: Less compute per token - faster inference
Scalability: Enables massive models without proportional resource demands
Specialization: Experts learn distinct tasks = better performance on diverse inputs

Real-World Use
Used in models like GPT-OSS, Mixtral, and Switch Transformers

21

Ideal for multi-agent systems, RAG pipelines, and modular workflows

21

OLLAMA TURBO—GPU IN THE
CLOUD

Beta service from ollama—data center level
gpu use in US Based cloud

Currently $20 a mo
Gpt oss 120b
Gpt oss 20b

Claims strict privacy and no retention

| admit that it is a bit of a cheat to the “I’'m going to run this all locally” but my Linux

computer is also a bit of a potato...
| am using some for this talk to speed things up plus | don’t have the best GPU on this

demo machine

22

¥ Ollama

O @

Windows &Mac has a nice gui

@

@ O Turbo

gpt-oss:20b v

23

explain how variadic c++ templates are useful

What a “variadic template” is

A variadic tenr roduced in C++11 mplate take an arbitrary number of template
parameters — a mixture of both,

The synta

ecursively decompase

d for packs of

Why you would want it — the practical benefits
I

gpt-oss:120b ~

Full Text response:

explain how variadic c++ templates are useful

edit

Thought for 1.7 seconds

The user asks: "explain how variadic C++ templates are useful". Need to explain
concept, benefits, use cases: type-safe variadic functions, forwarding, perfect-
forwarding constructors, compile-time recursion, tuple, std::variant, parameter
packs, etc. Provide examples, benefits over traditional overloads, enabling generic
programming, etc.

Provide clear explanation, perhaps code snippets. Also mention C++11 introduction,
C++14/17 enhancements. Include benefits: easier to write functions that accept any
number of arguments, static polymorphism, better compile-time checks, zero
runtime overhead, etc.

Will answer in a user-friendly manner.

What a “variadic template” is

A variadic template (introduced in C++11) lets a template take an arbitrary number
of template parameters — either types, non-type values, or a mixture of both.

The syntax is a parameter pack:

24

template<class... Ts> // a pack of types named Ts struct tuple; // e.g. std::tuple<Ts...>
Ts... stands for “zero or more types”. Inside the definition you can expand the pack
with Ts... again, or you can recursively decompose it (e.g. T, Rest...). The same idea
works for non-type packs (int... Is) and for packs of template arguments
(template<class...> class... Templates).

Why you would want it — the practical benefits

1. One generic definition replaces dozens of overloads

Before variadic templates you would write a family of overloads for each possible
arity:

// before C++11 — 2 overloads for 1 and 2 arguments void print(const std::string& a);
void print(const std::string& a, const std::string& b);

With a variadic template you get any number of arguments with a single definition:
template<class... Args> void print(const Args&... args) { (std::cout << ... << args) <<
\n'; // fold expression (C++17) }

Result: no more boiler-plate, and the code stays correct when you add new
overloads.

2. Type-safe “variadic” functions

printf is variadic, but the compiler can’t check that the format string matches the
argument types. A variadic template can perform static checks:

template<class... Args> std::string format(const std::string& fmt, Args&&... args) {
static_assert(sizeof...(Args) == count_placeholders(fmt), "argument count
mismatch"); //... }

If the user calls format("%d %s", 42, "hello") the compiler verifies the number (and
can even verify each type with extra traits). The resulting function is as flexible as
printf but type-safe.

3. Perfect-forwarding constructors / factory functions

A common pattern in generic libraries is to forward any set of arguments to a
member’s constructor:

template<class T, class... Args> std::unique_ptr<T> make_unique(Args&&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); }

make_unique works for any constructor signature of T without writing overloads for
each arity. The same technique powers:

std::vector::emplace_back

std::optional/std::variant constructors

User-defined “builder” classes that forward arguments to sub-objects

4. Compile-time collections: std::tuple, std::variant, std::array

All of these are implemented with variadic templates:

using my_tuple = std::tuple<int, std::string, double>;

The type list int, std::string, double is stored as a pack. Accessors (std::get<ldx>) are
generated by recursively peeling off the first type until the desired index is reached —
all done at compile time, no runtime indexing needed.

24

5. Generic recursion / Fold expressions

Before C++17 you would write a recursive helper to operate on each argument:
void foo() {} // base case template<class First, class... Rest> void foo(const First& f,
const Rest&... r) { process(f); foo(r...); // recurse on the rest }

C++17 introduced fold expressions, which collapse a pack with a binary operator:
template<class... Args> void foo(const Args&... args) { (process(args), ...); // left-fold
over '}

Both patterns let you write generic algorithms (sum, product, printing,
serialization...) that automatically scale to any number of arguments.

6. Metaprogramming utilities — std::index_sequence

Variadic packs pair naturally with parameter-pack expansion:
template<std::size_t... |, class Tuple> auto tuple_to_array_impl(const Tuple& t,
std::index_sequence<l...>) { return std::array{ std::get<I>(t)... }; }
std::index_sequence is itself a variadic pack of std::size_t values. It makes it possible
to turn a tuple into an array, expand arguments into initializer lists, generate
compile-time tables, etc.

7. Zero-runtime overhead

Because the pack is resolved at compile time, the generated code is as if you had
written a separate function for each arity. The compiler can inline, unroll loops, and
perform all the usual optimizations. There is no runtime loop or dynamic

dispatch involved unless you deliberately introduce one.

A concrete example: a tiny log function

// log.hpp #pragma once #include <iostream> #include <string_view> inline void
log_impl(std::ostream&) {} // base case template<class First, class... Rest> void
log_impl(std::ostream& os, const First& f, const Rest&... r) { os << f; // print current
argument if constexpr (sizeof...(Rest) > 0) os << '"'; // separator only if more args
log_impl(os, r...); // recurse } // public interface template<class... Args> void log(const
Args&... args) { log_impl(std::cout, args...); std::cout << '\n'; }

Why this is useful

One function works for any number of arguments, any mix of printable types.

The if constexpr ensures the separator is omitted after the last argument without a
runtime check.

The compiler expands the recursion, producing straight-line code like cout<<a<<'
'<<b<<' '<<c; — no loop, no allocation.

Summary checklist

What you get with variadic templatesHow it helps youSingle generic definition for
any arityReduce boilerplate, avoid missing overloadsStatic type checking of
argumentsSafer APls than C-style ...Perfect-forwarding of constructor
argumentsWrite factories, emplace_*, make_* onceCompile-time

containers (tuple, variant, array)Store heterogeneous data without runtime
costRecursive or fold-based algorithmsWrite summations, printers, serializers that

24

scale automaticallyMetaprogramming

utilities (index_sequence, integer_sequence)Generate indices, build compile-time
tablesZero runtime overheadGenerated code is as efficient as hand-written
overloadsln short, variadic templates give C++ the power of true compile-time
variadic functions, enabling expressive, type-safe, and high-performance generic
code that previously required a lot of manual duplication or unsafe tricks. They are
the backbone of many modern standard-library facilities and a daily workhorse for
generic library authors.

Downloading model

24

SOMETRIR

&OMPLE “.\‘

ﬂl F FERENR

A BRIEF DIVE INTO UV

Turbocharged python package manager with
speed, determinism, and modern deployment

* Blazing Fast Installs

* Smarter dependency Resolution

* All'in one tooling

* Compatibility to Pip-tools and Poetry
* Reproducibility first

* Thisis just a brief overview... could likely give a whole talk on this!

* UV was created by Astral-Same team behind linter Ruff
* US based development company
* Known for high-performance tooling in rust
. Blazing Fast Installs
* Builtin rust for performance
. Installs dependencies faster than pip and venv
* Smarter dependency Resolution
* Supports pyproject.toml and lock files natively
* Uses logic akin to cargo or npm
* Allin one tooling
* Handles virtual environments and package management all in one clean
interface
* Compatibility to Pip-tools and Poetry
. It plays nice and respects either toolset integrating in your workflow
* Reproducibility first
* Built in deterministic environments perfect for:
 Ci
* Container builds

26

* System level python installs
Why I love it as a linux user:
. No reliance on bloated python binaries
* Smooth shell tools and dot file based setups
* So much nicer than pip hell

26

GETTING STARTED

CURL -LSSF
HTTPS://ASTRAL.SH/UV/INSTALL.SH | SH

OR
PIP INSTALL UV
OR

WINGET INSTALL -ID=ASTRAL-SH.UV -E

Add copy and paste

27

LET'S ACTUALLY GET STARTED NOW:

UV PYTHON INSTALL 3.12 (OR CAN DO MULTIPLE I.E. UV PYTHON INSTALL 3.12
3.11)

UV PYTHON LIST

UV PYTHON UPGRADE 3.12 (OR UV PYTHON UPGRADE)

UV INIT —=SCRIPT EXAMPLE.PY —PYTHON 3.12
UV ADD PANDAS (--DEV —OPTIONAL)

UVv LOCK

Uv will use existing python version if possible
Force system python with —-no-managed-python

Uv python upgrade— all managed versions
Uv run example.py will run with no dependencies
If pyproject.toml exists will install needs before running

--dev for dev work or testing like black, pytest, mypy type checkers
--optional only needed for some runtime conditions with fall back logic or feature flags etc

28

UVX—DO A THING
WITHOUT INSTALLING
I'T

UVX BLACK (SAME AS UV TOOLS RUN
BLACK)

UVX PYCOWSAY HELLO LUG

AS AN ASIDE:

IF TOOL IS INSIDE OF PROJECT AND
REQUIRES PROJECT BE INSTALLED
(PYTEST) USE UV RUN INSTEAD

Tools are installed in a temp environment

29

JUPYTER NOTEBOOK

#election at the end -add
B ob.select- 1 INTERACTIVE DOCUMENT THAT
der_ob.select=1
#ntext.scene.objects.activg .
Wi "Selected” + str(modifier i BLENDS:
#eirror_ob.select = @
bpy . context. selected_ob

ata.objects[one.name].se . CODE
grint("please select exacthy ™

_ OPERATOR CLASSES -= e OUTPUT

« TEXT (MARKDOWN)

o the setected @
irror X

Think like a digital lab notebook —great for data sci, ML, prototyping, or Teaching

We are going to use it in VS Code
Setup the python extension
create an lpynb
select a python interpeter

30

VS CODE

= Packages:

* Python

* Jupyternotebook

* Ollama autoencoder

* continue

31

IMAGE TO TEXT

As Gemma is based off of Gemini it can do image recognition.

Multimodal

Multimodal —The vision and language bits were trained at the same time as a part of the

same process from the ground up

32

Image Patches Text Tokens

T Tokenizer
\ Unified Embedding Space /

Concat + Positional Encoding

Multimodal T&sfnrmer Layers

Self-Attention + Cross-Modal Attention

Task-specific&ads

Classification / Captioning / VOA

As you can see in the visualization above, Gemini’s multimodal architecture flows like a
single, integrated pipeline rather than a stitched-together system:

Image Patches & Text Tokens enter in parallel — the visual side is broken into patches (like
ViT), while the text side is tokenized.

Both streams are projected into a unified embedding space with positional encodings so
the model can treat them as one coherent sequence.

Inside the multimodal transformer layers, self-attention and cross-modal attention operate
together, letting visual and textual cues inform each other at every step.

Finally, task-specific heads branch off for captioning, classification, visual Q&A, or other
outputs — all drawing from the same shared representation.

It’s a bit like having a single brain that reads a paragraph and studies a diagram at the same
time, constantly cross-referencing them before deciding how to respond.

33

HANDWRITING TO TEXT

IMAGE INPUT INGESTED ALONGSIDE TEXT
IMAGE SPLIT INTO SMALL TILES

TEXT IS TOKENIZED (PROMPT SIDE)
UNIFIED EMBEDDING SPACE
MULTIMODAL TRANSFORMER LAYERS

TASK SPECIFIC HEAD: TEXT GENERATION

Handwriting - Text in Gemini
Image Input
You provide the handwritten note as an image (e.g., a photo or scan).
Gemini ingests it alongside your text prompt: "Please transcribe the handwriting in
this image."
Image Patching
The image is split into small, fixed-size patches (like tiles in a mosaic).
Each patch is converted into a vector embedding that captures its visual features —
curves, strokes, spacing.
Text Tokenization (Prompt Side)
Your instruction text is tokenized into embeddings.
Now we have two parallel streams: visual embeddings (from patches) and text
embeddings (from your prompt).
Unified Embedding Space
Both streams are projected into the same multimodal embedding space.
This lets the model treat “a loop in the letter g” and “the word ‘going’” as related
concepts.
Multimodal Transformer Layers
Self-attention and cross-modal attention allow the model to:
Recognize letter shapes and sequences.

34

Use language priors to resolve ambiguous handwriting (e.g., “rn” vs. “m”).
Maintain context across the whole note.
Task-Specific Head: Text Generation
The model outputs a sequence of text tokens — the transcription.
This can be plain text or structured (e.g., JSON with line breaks preserved).

34

A BRIEF CHAT ABOUT SIZE

Gemma expects 896x896 images
~256 tokens
Siglip encoder can scan across—"Pan and scan”

Not pixel perfect

Patch-Based Encoding: Gemma breaks the image into visual patches, so even large images
can be tokenized and interpreted.

Contextual Guessing: It doesn’t rely on pixel-perfect OCR—it uses learned associations
between visual patterns and language.

Pan & Scan: The encoder can “look around” the image and focus on salient regions,
including text.

B ol go0d ptnsats

or

Now = e Fime
to #e il of Fheir f»m7

o hud wnltten_aott 7, iy Jor G

al
C
Thoer Ls 55 goen_sgrse |

2elle” S] oy
e : T
e ¥ nwas ™

Hero 7

36

what does this say?

Here's what the note says, based on the image:

"Now is the time for all good men to come to the aid of their party. This is a hand written

note. I'm my horrible How was ! Hello St. Louis with toy! *

It appears to be a playful, whimsical note.

37

what does this note say

Now is the time for all good men to come to the aid of their party
This is a hand written note in my horrible handuriting
Now this is even worse!
Hello St Louis
:) (drawing of a face) Kilroy was here!
It’s playful and self-deprecating, with a nod to the classic typing drill and the iconic

“Kilroy was here” doodle. The drawings add a fun touch—especially the Kilroy figure
peeking over the line. Want to riff on this style or turn it into a digital postcard or sticker?

77 Editin ape ;

&) Quickresponse -

38

Introdiiction (o Linear Transformations 73

veetor fs ot u linear combination of the others and yet the whole set of vectors is
Tinearly dependent. In this practice problem, w is not a lincar combination of u, v,

Yes, by Theorem 8, There are more vectors (four) than entries (three) in them,

INTRODUCTION TO LINEAR TRANSFORMATIONS
The difference between a matrix equation Ax = b and the associated vector equation
X1) + -+ + x,8, = bis merely a matter of notation. However,a matrix equation Ax = b

can arise in linear algebra (and in applications such as computer graphics and signal

processing) in a way that is not directly connected with linear combinations of vectors.

This happens when we think of the matrix A as an object that “acts” on a vector x by

multiplication to produce a new vector called AX.

For instance, the equations

1
1
1
1
+
x

say that multiplication by A transforms x into b and transforms u into the zero vector
See Fig. 1.

multiplication
byA

muliplication
by A

()

FIGURE 1 Transforming vectors via matrix
multiplication.

From this new point of view, solving the equation Ax = b amounts (o finding all
vectors x in R that are transformed into the vector b in R under the “action” of
multiplication by A. ! !

The correspondence from X to Ax is a finction from one set of vectors to another.
“This concept generalizes the common notion of a function as a rule that transforms one
real number into another, s -t

Atransformation (0 fanetion orwappiiig) Tulyom K" to R is a tule that assigns
10 each vector x in R a vector T (x) in R", The set R" is called the domatn of 7, and

39

at does this image say?

break down the key concepts presented in the ima

Overall Idea:

The image is introducing the idea of a “transformation” as a way to change vectors in R43 (three-
ional spa A. It's moving from the problem of linear combinations to a new,
more general concept.

Specific Content:

y stating that the diffe e between a matrix equation Ax
ted linear problem is merely a matter of notation.
. The Transformation: The transformation from x to b (when multiplying by A} transform
the zero vector. The key idea here is that multiplication by A is now viewed as a more general
tion" that fundamentally changes vectol

Graphical Representation: T

resents the action of mult

In essence, the image is shifting from thinking about vector multiplication as a linear combination

to seeing it as a more fundamental transformation that can take a vector and produce a different
vector entirely.

Do you want me to elaborat ular part of this explanation, suc

= How this relates to linear combinations?

* How transformations are defined mathematically?

40

can you give me the full text of the image

kay, here is the full text from the imag
1.8 INTRODUCTION TO LINEAR TRANSFORMATIONS 73

The difference between a matrix equation Ax = b and the associated linear problem,

matter of notation. However, a matrix equation Ax = b can arise in linear algebra (and in applications,

as computer graphics and signal processing) in a way that is not directly connected
combinations of vectors. This happens when we think of the matrix A as

multiplication to produce a new vector called b
* xAxbAbAb
See Fig. 1.
1.9 INTRODUCTION TO LINEAR TRANSFORMATIONS 74

A transformation (or function mapping) T from R™ to R™ is a rule that assigns to each vector xin R? a

vector T{x) in R™. The set R™ i lled the domain of T and R™ is called the range of T.

For instance, the equation Ax = b amounts to finding all vectors x in R" that are transformed into the

vector b in R™ under the “action” of multiplication by A.

1.10 EXAMPLE: A SIMPLE TRANSFORMATION 75

41

what does this image say?

The image is a fextbook page infroducing linear transformations in linear algebra. Here's
a breakdown of what it covers:

B Key Concepts

= Matrix equation vs. vector equation: It explains how a matrix equation Ax = b can
arise independently of vector combinations.

Matrix as a transformation: The matrix 4 acts on a vector x to produce a new vector
Ax, essentially transforming x into another vector.

Example Calculations

Two matrix-vector multiplications are shown:

§J Quickresponse -

42

give me the full text on this page

| can't give you the entire verbatim text, since it appears to come from copyrighted
material. But | can give you a detailed, structured summary that preserves the meaning
and key points.

M Summary of the Page

Topic: Introduction to Linear Transformations

Opening context: Discusses that a vector not being a linear combination of others
doesn't prevent the entire set from being linearly dependent. Uses an example where
w is not a combination of u, v, z.

Theorem reference: Notes that if there are more vectors than entries in each vector
(e.g., 4 vectors in R?), the set is automatically linearly dependent.

Main concept shift: Moves from thinking about vector equations to matrix equations.

Vector equation: xja; + - + xpa, = b
Matrix equation: Ax = b

Niffaran~a. Macths natatinn hirt matriv aniiatinne ~an ariea fram ~rantavie

43

»

what does this image say

& Workflow

This image is a page from a linear algebra textbook. specifically page 73, which i ection 1.8 on Linear
Transformations.

Here is the text from the image:
1.8 Introduction to Linear Transformations 73

vector is not a linear combination of the others and yet the whole set of vectors is linearly dependent. In this practice
problem, wis not a linear combination of u, v, and z. 4. Yes, by Theorem 8. There are more vectors (four) than entries (three)

in them.
1.8 INTRODUCTION TO LINEAR TRANSFORMATIONS

The difference between a matrix equation Ax = b and the associated vector equation x,a, + ... + X,a, = b is merely a matter
of notation. However, a matrix equation Ax = b can arise in linear algebra (and in applications such as computer graphics
and signal processing) in a way that is not directly connected with linear combinations of vectors. This happens when we

think of the matrix A as an object that "acts” on a vector x by muitiplication to produce a new vector called Ax.
For instance, the equations

4-313]1(11=5]and[4-313]1[11=(01[20511[11181(20511[41[01[11F-11[1][3]1111111AxbAuU

say that multiplication by A transforms x into b and transforms u into the zero vector. See Fis

[Image of a diagram showing two vector spaces, R* and R% An arrow labeled "multiplication by A" points from vector x in R*

tiplicat

1source

44

Tesseract OCR LLM

Iage : Image O C R
Preprocessing
) v I}
Text Localization Encoder SUDO APT INSTALL TESSERACT-OCR
v | TESSERACT INPUT.PNG OUTPUT.TXT
Character
Segmentation Vision Model CAT OUTPUT.TXT
¥ \—I_a
[Post-Processing —
Text

Tesseract is an open-source OCR (Optical Character Recognition) engine that converts
images of text into machine-readable text. Under the hood, it’s a multi-stage pipeline that
blends classic computer vision with modern neural networks.
% How It Works — Step by Step
Image Preprocessing
Cleans and normalizes the input image to improve recognition accuracy.
Common steps: grayscale conversion, noise removal, binarization (turning pixels
into black/white), and deskewing to straighten tilted text.
Text Localization
Detects where text regions are in the image.
Splits the page into blocks, lines, and words — this is called layout analysis.
Character Segmentation
Breaks each word into individual character shapes (glyphs).
Handles tricky cases like touching or overlapping letters.
Recognition Engine
Legacy mode (Tesseract 3): Pattern-matching against stored character shapes.
Modern mode (Tesseract 4+): Uses an LSTM (Long Short-Term Memory) neural
network trained on sequences of characters, which improves accuracy on
connected text and cursive.
Post-Processing

45

Applies a dictionary and language model to correct likely errors.
For example, if the raw output says “hte,” it can autocorrect to “the” based on
context.

45

a
vector
X

by

multiplication

to
produce
a

new
vector
called
X

For
instance

the
equation

finding
all
vectors
X

such
that

1s:~$./ollama_img.sh txtbook.jpg 'give me the

corrected text based off of this ocr:

‘cat txtbook.txt.txt''

46

1.8 Introduction to Linear Transformations (Section16)

A vector may not be a linear combination of the others, yet the whole set of vectors can be linearly

dependent. In the practice problem that follows, w is not a linear combination of u, v, and

4.Yes, by Theorem 8. There are more vectors (four) than entries (three) in them.

INTRODUCTION TO LINEAR TRANSFORMATIONS
The difference between a matrix equation Ax = b and the associated vector equation

2\ b
A

T In bm)

is merely a matter of notation. However, a matrix equation Ax = b can arise in linear algebra (and in
applications such as computer graphics and signal processing) in a way that is not directly connected
with linear combinations of vectors. This happens when we think of the matrix A as an object that

cts on a vector X by multiplication to produce a new vector, denoted Ax.

For instance, consider the 2 x 2 matrix

gpt-oss:120b ~

47

48

what kind of dog is this?

Based on the image, this is a Black Labrador Retriever.

Here's what points to that identification:

Coat Color: The dog has a glossy, solid black coat, which is a common color for Labradors.

Build: The dog has a strong, athletic build typical of Labrador Retrievers.

Facial Features: The broad head, expressive eyes, and gentle expression are characteristic of the
breed.

Do you want to know anything else about Labrador Retrievers?

49

A DEEP DIVE TO_DEI\/'IO“LAND

50

TROUBLESHOOTING

“GPU not detected?” = run nvidia-smi / check drivers

“Ollama not found?” = PATH or service not started

“O0M?” = choose smaller/quantized model

51

QUESTIONS??

52

