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DESCRIPTION
Discover the joy of running language models 
locally—without breaking the bank. This session 
dives into setting up Ollama and explores 
creative ways to use local models for practical 
tasks, experimentation, and maybe even a few 
cost-saving wins. We’ll explore Ollama Turbo for 
scaling up, show how uv makes quick Python 
projects effortless, and use VS Code to turn your 
local dev setup into a smooth, productive 
environment. Whether you're optimizing 
workflows or just vibing with your own AI, this 
talk is packed with tools, tips, and energy to help 
you go further with local LLMs.

May be slightly over selling but we can find out after the talk 
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EXPECTATIONS MANAGEMENT

What this talk isn’t:

• Perfectly polished

• Presented by a true “expert”

• Error free

What this talk is:

• A good starting point

• On super high performance hardware

• Hopefully entertaining

• Whipped up starting on Saturday
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WHAT IS  A LLM?

 What It Can Do:

Understand context and intent in language

Generate coherent, natural-sounding text

Answer questions, summarize info, write code, and 
more

Handle multi-turn conversations and reasoning tasks

 Why “Large”?

Refers to scale of training data and number of 
parameters

Enables broader generalization and deeper 
understanding

 What Is a Large Language Model (LLM)?

“A Large Language Model is a type of AI trained 
to understand and generate human language.”

 Core Characteristics:

Architecture: Built using transformer neural 
networks

Training: Exposed to massive amounts of text to 
learn patterns, context, and meaning

Size: Typically billions to trillions of parameters

Modality: Primarily textual, though some LLMs 
now support images, audio, and even code
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TOKENS

Building blocks of how ai models generate text.

Can be:
• Whole words (“hello”)
• Sub words (“un” “believe” “able”)
• Multi word phrases (New York City”)
• Models process tokens, not characters or words.
• Count impacts speed, cost, and context limits
• Common phrases can be compressed into fewer tokens
• https://gpt-tokenizer.dev/
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THE STOCHASTIC PARROT

Emily M Bender in 2021 paper “on the dangers of stochastic parrots: can Language models 
be too big?” 

Stochastic: This term refers to processes that are randomly determined, highlighting that 
LLMs operate based on probabilistic associations rather than comprehension. They 
generate text by predicting the next word in a sequence based on patterns in their training 
data. 

Parrot: This part of the metaphor emphasizes the idea that LLMs can mimic human 
language without grasping its meaning, similar to how a parrot can repeat phrases without 
understanding them. 
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https://dl.acm.org/doi/10.1145/3442188.3445922 
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This does bring up the concept of temperature… if you always go with the most predictable 
word each time it is far more boring… randomly choose other paths!
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LLM TIMELINE

[1706.03762] Attention Is All You Need
LLM2024.pdf Stanford CS124

13



Comparing Large Cloud-Based LLMs vs.  Smal l  Local  
Models

Small Local Models (e.g. Phi-2, Gemma 2B)Very Large LLMs (GPT-4 / GPT-5)Feature

<7B parameters100B–Trillion+ parametersModel Size

Runs locally on CPU/GPUCloud-only (API access)Hosting

Moderate (2K–128K depending on variant)Massive (32K–>100K tokens)Context Window

Instant response, no internet neededDepends on network & APILatency

Free/local after initial setupAPI charges per tokenCost

Utility agents, quick lookup, fallback routingGeneral AI, multi-step reasoning, synthesisUse Cases

Full data privacy (local execution)Data shared over APIPrivacy

Local fine-tuning or adapters like LoRACustom GPTs or fine-tuning via OpenAI toolsTuning
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TECH STACK

P Y T H O N 3 . 1 2

J U P Y T E R N O T E B O O K  &  V S  C O D E

O L L A M A

U V  P Y T H O N  P A C K A G E  M A N A G E R

M O D E L S :

G E M M A

G P T - O S S
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OLLAMA—MAKES LOCAL AI FEEL LIKE CLOUD AI  
WITHOUT THE CLOUD

• Privacy by design

• Offline capability

• Simple setup

• Model Flexible

• Multi modal support

• Context control

Ideal for:

• RAG and LangChain/LangGraph

• Prototypes

• Privacy First

Dev Friendly:

• Cli Tools

• Modular engine

• Active development and Github community

Ollama is a streamlined platform for running large language models locally—on your own 
machine, with no cloud dependency.

Feature Benefit
Privacy by Design Keeps data on your device—ideal for sensitive or regulated 
workflows
Offline Capability Run models without internet—great for remote or air-fpped 
environments
Simple Setup GUI for Mac/Windows + CLI for devs—no complex installs
Model Flexibility Supports LLaMA, Gemma, DeepSeek, Qwen, GPT-OSS, and 
more
Multimodal Support Analyze text, code, and images with drag-and-drop simplicity
Context Control Adjust memory up to 128k tokens for long-form reasoning
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INSTALLING OLLAMA

• Needs:

• Ubuntu 20.04 or better (24.04+ best)

• Several GB of space 

• Gpu is best, cpu works though

• First update (apt update; apt upgrade )

• curl -fsSL https://ollama.com/install.sh | sh

Test using ollama –version
Ollama pull llama3
Ollama run llama3

Curl –fsSL https://ollama.com/install.sh | sh

fsSL what?
Journalctl –u ollama –no-pager
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LETS TALK MODELS—A BRIEF SAMPLE 
NotesStrengthsSizesCreatorModel

8b runs well locally 
(quantized)

High Quality 
reasoning and 
multilingual

8B, 70BMetaLLaMA3

Great for laptops and 
low powered rigs

Light weight, 
efficient, open 
weights

2b, 4b 7bGoogleGemma

Uses MoESmall fast and 
surprisingly capable

7b, mixtral 12x7bMistral aiMistral

Ideal embedded or 
edge

Small fast, 
surprisingly capable

3.8b, 7bMicrosoftPhi-3

Best with GPU
Tuned for search 
tasks

Tuned for RAG35BCohereCommand R+
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GPT OSS—A NEW PLAYER

Open weight release

20B model can run on consumer hw

120B targets H100 class GPU

Supports tool use, Chain of thought reasoning and 

structured messages

MoE architecture

20b model requires 16 gb vram or 24 gb ram

MoE on next slide
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“OPEN SOURCE” VS OPEN WEIGHTS

Open source:

• OSI approved licenses

• Study, modify, and redistribute—including 

derivatives and commercial use 

• Reproducibility or modify (interface/training 

code, model definition and weights)

Open Weights:

• Weights are downloadable and runnable locally

• Often restricted use (no commercial, no 

redistribution, no training other models etc)

• Training data, full training code not released
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WHAT IS  MIXTURE OF EXPERTS

Input → 

GaƟng Network → 

Select Experts → 

Process → 

Aggregate Output

Why:

• Efficiency

• Scalability

• Specialization

Graphic from: architecture.png (1139×918) (deep seek ai)

A Mixture of Experts is a neural network architecture that splits computation across 
multiple specialized sub-networks—called experts—and activates only the most relevant 
ones per input.

Component Role
Experts Specialized sub-networks trained to handle specific types of 
input
Gating Network Routes each input to the most relevant experts based on 
learned logic
Sparse Activation Only a few experts are activated per input, reducing compute 
cost

Efficiency: Less compute per token → faster inference
Scalability: Enables massive models without proportional resource demands
Specialization: Experts learn disƟnct tasks → beƩer performance on diverse inputs

Real-World Use
Used in models like GPT-OSS, Mixtral, and Switch Transformers
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Ideal for multi-agent systems, RAG pipelines, and modular workflows
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OLLAMA TURBO—GPU IN THE 
CLOUD
• Beta service from ollama—data center level 

gpu use in US Based cloud

• Currently $20 a mo

• Gpt oss 120b

• Gpt oss 20b

• Claims strict privacy and no retention

I admit that it is a bit of a cheat to the “I’m going to run this all locally” but my Linux 
computer is also a bit of a potato…
I am using some for this talk to speed things up plus I don’t have the best GPU on this 
demo machine
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Windows &Mac has a nice gui
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Full Text response:
explain how variadic c++ templates are useful
edit
Thought for 1.7 seconds
The user asks: "explain how variadic C++ templates are useful". Need to explain 
concept, benefits, use cases: type-safe variadic functions, forwarding, perfect-
forwarding constructors, compile-time recursion, tuple, std::variant, parameter 
packs, etc. Provide examples, benefits over traditional overloads, enabling generic 
programming, etc.
Provide clear explanation, perhaps code snippets. Also mention C++11 introduction, 
C++14/17 enhancements. Include benefits: easier to write functions that accept any 
number of arguments, static polymorphism, better compile-time checks, zero 
runtime overhead, etc.
Will answer in a user-friendly manner.
What a “variadic template” is
A variadic template (introduced in C++11) lets a template take an arbitrary number 
of template parameters – either types, non-type values, or a mixture of both.
The syntax is a parameter pack:
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template<class... Ts> // a pack of types named Ts struct tuple; // e.g. std::tuple<Ts...> 
Ts... stands for “zero or more types”. Inside the definition you can expand the pack 
with Ts... again, or you can recursively decompose it (e.g. T, Rest...). The same idea 
works for non-type packs (int... Is) and for packs of template arguments 
(template<class...> class... Templates).
Why you would want it – the practical benefits
1. One generic definition replaces dozens of overloads
Before variadic templates you would write a family of overloads for each possible 
arity:
// before C++11 – 2 overloads for 1 and 2 arguments void print(const std::string& a); 
void print(const std::string& a, const std::string& b); 
With a variadic template you get any number of arguments with a single definition:
template<class... Args> void print(const Args&... args) { (std::cout << ... << args) << 
'\n'; // fold expression (C++17) } 
Result: no more boiler-plate, and the code stays correct when you add new 
overloads.
2. Type-safe “variadic” functions
printf is variadic, but the compiler can’t check that the format string matches the 
argument types. A variadic template can perform static checks:
template<class... Args> std::string format(const std::string& fmt, Args&&... args) { 
static_assert(sizeof...(Args) == count_placeholders(fmt), "argument count 
mismatch"); // … } 
If the user calls format("%d %s", 42, "hello") the compiler verifies the number (and 
can even verify each type with extra traits). The resulting function is as flexible as 
printf but type-safe.
3. Perfect-forwarding constructors / factory functions
A common pattern in generic libraries is to forward any set of arguments to a 
member’s constructor:
template<class T, class... Args> std::unique_ptr<T> make_unique(Args&&... args) { 
return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); } 
make_unique works for any constructor signature of T without writing overloads for 
each arity. The same technique powers:
std::vector::emplace_back
std::optional/std::variant constructors
User-defined “builder” classes that forward arguments to sub-objects
4. Compile-time collections: std::tuple, std::variant, std::array
All of these are implemented with variadic templates:
using my_tuple = std::tuple<int, std::string, double>; 
The type list int, std::string, double is stored as a pack. Accessors (std::get<Idx>) are 
generated by recursively peeling off the first type until the desired index is reached –
all done at compile time, no runtime indexing needed.
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5. Generic recursion / Fold expressions
Before C++17 you would write a recursive helper to operate on each argument:
void foo() {} // base case template<class First, class... Rest> void foo(const First& f, 
const Rest&... r) { process(f); foo(r...); // recurse on the rest } 
C++17 introduced fold expressions, which collapse a pack with a binary operator:
template<class... Args> void foo(const Args&... args) { (process(args), ...); // left-fold 
over ',' } 
Both patterns let you write generic algorithms (sum, product, printing, 
serialization…) that automatically scale to any number of arguments.
6. Metaprogramming utilities – std::index_sequence
Variadic packs pair naturally with parameter-pack expansion:
template<std::size_t... I, class Tuple> auto tuple_to_array_impl(const Tuple& t, 
std::index_sequence<I...>) { return std::array{ std::get<I>(t)... }; } 
std::index_sequence is itself a variadic pack of std::size_t values. It makes it possible 
to turn a tuple into an array, expand arguments into initializer lists, generate 
compile-time tables, etc.
7. Zero-runtime overhead
Because the pack is resolved at compile time, the generated code is as if you had 
written a separate function for each arity. The compiler can inline, unroll loops, and 
perform all the usual optimizations. There is no runtime loop or dynamic 
dispatch involved unless you deliberately introduce one.
A concrete example: a tiny log function
// log.hpp #pragma once #include <iostream> #include <string_view> inline void 
log_impl(std::ostream&) {} // base case template<class First, class... Rest> void 
log_impl(std::ostream& os, const First& f, const Rest&... r) { os << f; // print current 
argument if constexpr (sizeof...(Rest) > 0) os << ' '; // separator only if more args 
log_impl(os, r...); // recurse } // public interface template<class... Args> void log(const 
Args&... args) { log_impl(std::cout, args...); std::cout << '\n'; } 
Why this is useful
One function works for any number of arguments, any mix of printable types.
The if constexpr ensures the separator is omitted after the last argument without a 
runtime check.
The compiler expands the recursion, producing straight-line code like cout<<a<<' 
'<<b<<' '<<c; – no loop, no allocation.
Summary checklist
What you get with variadic templatesHow it helps youSingle generic definition for 
any arityReduce boilerplate, avoid missing overloadsStatic type checking of 
argumentsSafer APIs than C-style ...Perfect-forwarding of constructor 
argumentsWrite factories, emplace_*, make_* onceCompile-time 
containers (tuple, variant, array)Store heterogeneous data without runtime 
costRecursive or fold-based algorithmsWrite summations, printers, serializers that 
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scale automaticallyMetaprogramming 
utilities (index_sequence, integer_sequence)Generate indices, build compile-time 
tablesZero runtime overheadGenerated code is as efficient as hand-written 
overloadsIn short, variadic templates give C++ the power of true compile-time 
variadic functions, enabling expressive, type-safe, and high-performance generic 
code that previously required a lot of manual duplication or unsafe tricks. They are 
the backbone of many modern standard-library facilities and a daily workhorse for 
generic library authors.
Downloading model
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A brief side quest to look at UV
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A BRIEF  DIVE INTO UV
Turbocharged python package manager with 
speed, determinism, and modern deployment

• Blazing Fast Installs

• Smarter dependency Resolution

• All in one tooling

• Compatibility to Pip-tools and Poetry

• Reproducibility first

• This is just a brief overview… could likely give a whole talk on this!

• UV was created by Astral–Same team behind linter Ruff
• US based development company
• Known for high-performance tooling in rust 

• Blazing Fast Installs
• Built in rust for performance
• Installs dependencies faster than pip and venv

• Smarter dependency Resolution
• Supports pyproject.toml and lock files natively
• Uses logic akin to cargo or npm

• All in one tooling
• Handles virtual environments and package management all in one clean 

interface
• Compatibility to Pip-tools and Poetry

• It plays nice and respects either toolset integrating in your workflow
• Reproducibility first

• Built in deterministic environments perfect for:
• Ci
• Container builds
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• System level python installs
• Why I love it as a linux user:

• No reliance on bloated python binaries
• Smooth shell tools and dot file based setups
• So much nicer than pip hell 
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GETTING STARTED

C U R L  - L S S F  

H T T P S : / / A S T R A L . S H / U V / I N S T A L L . S H  |  S H

O R

P I P  I N S T A L L  U V

O R

W I N G E T  I N S T A L L  – I D = A S T R A L - S H . U V  - E

Add copy and paste
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LET'S  ACTUALLY GET STARTED NOW:

U V P Y T H O N  I N S TA L L  3 . 1 2  ( O R  C A N  D O  M U LT I P L E  I . E . U V P Y T H O N  I N S TA L L  3 . 1 2  

3 . 1 1 )

U V P Y T H O N  L I S T

U V P Y T H O N  U P G R A D E  3 . 1 2  ( O R  U V P Y T H O N  U P G R A D E )

U V I N I T – S C R I P T  E X A M P L E . P Y  – P Y T H O N  3 . 1 2

U V A D D  PA N D A S  ( - - D E V  – O P T I O N A L )

U V L O C K  

Uv will use existing python version if possible
Force system python with –no-managed-python

Uv python upgrade– all managed versions 

Uv run example.py  will run with no dependencies 

If pyproject.toml exists will install needs before running

--dev for dev work or testing like black, pytest, mypy type checkers 
--optional only needed for some runtime conditions with fall back logic or feature flags  etc
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UVX—DO A THING 
WITHOUT INSTALLING 
IT

U V X  B L A C K  ( S A M E  A S  U V  T O O L S  R U N  

B L A C K )

U V X  P Y C O W S A Y  H E L L O  L U G

A S  A N  A S I D E :

I F  T O O L  I S  I N S I D E  O F  P R O J E C T  A N D  

R E Q U I R E S  P R O J E C T  B E  I N S T A L L E D  

( P Y T E S T )  U S E  U V  R U N  I N S T E A D

Tools are installed in a temp environment
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JUPYTER NOTEBOOK

I N T E R A C T I V E  D O C U M E N T  T H AT  

B L E N D S :

• C O D E  

• O U T P U T

• T E X T  ( M A R K D O W N )

Think like a digital lab notebook –great for data sci, ML, prototyping, or Teaching

We are going to use it in VS Code 
Setup the python extension
create an Ipynb
select a python interpeter
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VS CODE

 Packages: 

• Python

• Jupyternotebook

• Ollama autoencoder

• continue

31



IMAGE TO TEXT

 As Gemma is based off of Gemini it can do image recognition.

 Multimodal 

Multimodal –The vision and language bits were trained at the same time as a part of the 
same process from the ground up
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As you can see in the visualization above, Gemini’s multimodal architecture flows like a 
single, integrated pipeline rather than a stitched-together system:
Image Patches & Text Tokens enter in parallel — the visual side is broken into patches (like 
ViT), while the text side is tokenized.
Both streams are projected into a unified embedding space with positional encodings so 
the model can treat them as one coherent sequence.
Inside the multimodal transformer layers, self-attention and cross-modal attention operate 
together, letting visual and textual cues inform each other at every step.
Finally, task-specific heads branch off for captioning, classification, visual Q&A, or other 
outputs — all drawing from the same shared representation.
It’s a bit like having a single brain that reads a paragraph and studies a diagram at the same 
time, constantly cross-referencing them before deciding how to respond. 
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HANDWRIT ING TO TEXT

I M A G E  I N P U T  I N G E S T E D  A L O N G S I D E  T E X T

I M A G E  S P L I T  I N T O  S M A L L  T I L E S

T E X T  I S  T O K E N I Z E D  ( P R O M P T  S I D E )

U N I F I E D  E M B E D D I N G  S P A C E

M U LT I M O D A L  T R A N S F O R M E R  L A Y E R S

T A S K  S P E C I F I C  H E A D :  T E X T  G E N E R AT I O N  

Handwriting → Text in Gemini
Image Input

You provide the handwritten note as an image (e.g., a photo or scan).
Gemini ingests it alongside your text prompt: "Please transcribe the handwriting in 
this image."

Image Patching
The image is split into small, fixed-size patches (like tiles in a mosaic).
Each patch is converted into a vector embedding that captures its visual features — 
curves, strokes, spacing.

Text Tokenization (Prompt Side)
Your instruction text is tokenized into embeddings.
Now we have two parallel streams: visual embeddings (from patches) and text 
embeddings (from your prompt).

Unified Embedding Space
Both streams are projected into the same multimodal embedding space.
This lets the model treat “a loop in the letter g” and “the word ‘going’” as related 
concepts.

Multimodal Transformer Layers
Self-attention and cross-modal attention allow the model to:

Recognize letter shapes and sequences.
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Use language priors to resolve ambiguous handwriting (e.g., “rn” vs. “m”).
Maintain context across the whole note.

Task-Specific Head: Text Generation
The model outputs a sequence of text tokens — the transcription.
This can be plain text or structured (e.g., JSON with line breaks preserved).
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A BRIEF  CHAT ABOUT SIZE

Gemma expects 896x896 images

~256 tokens

Siglip encoder can scan across—”Pan and scan”

Not pixel perfect

Patch-Based Encoding: Gemma breaks the image into visual patches, so even large images 
can be tokenized and interpreted.
Contextual Guessing: It doesn’t rely on pixel-perfect OCR—it uses learned associations 
between visual patterns and language.
Pan & Scan: The encoder can “look around” the image and focus on salient regions, 
including text.
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OCR 

S U D O A P T  I N S TA L L  T E S S E R A C T - O C R

T E S S E R A C T  I N P U T. P N G  O U T P U T.T X T

C AT  O U T P U T.T X T

Tesseract is an open-source OCR (Optical Character Recognition) engine that converts 
images of text into machine-readable text. Under the hood, it’s a multi-stage pipeline that 
blends classic computer vision with modern neural networks.

 How It Works — Step by Step
Image Preprocessing

Cleans and normalizes the input image to improve recognition accuracy.
Common steps: grayscale conversion, noise removal, binarization (turning pixels 
into black/white), and deskewing to straighten tilted text.

Text Localization
Detects where text regions are in the image.
Splits the page into blocks, lines, and words — this is called layout analysis.

Character Segmentation
Breaks each word into individual character shapes (glyphs).
Handles tricky cases like touching or overlapping letters.

Recognition Engine
Legacy mode (Tesseract 3): Pattern-matching against stored character shapes.
Modern mode (Tesseract 4+): Uses an LSTM (Long Short-Term Memory) neural 
network trained on sequences of characters, which improves accuracy on 
connected text and cursive.

Post-Processing
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Applies a dictionary and language model to correct likely errors.
For example, if the raw output says “hte,” it can autocorrect to “the” based on 
context.
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A DEEP DIVE TO DEMO LAND
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TROUBLESHOOTING

“GPU not detected?” → run nvidia-smi / check drivers

“Ollama not found?” → PATH or service not started

“OOM?” → choose smaller/quantized model
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QUESTIONS??
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